第一部分:机器学习基础篇
第一章:自然语言处理概述
自然语言处理的现状与前景
自然语言处理应用
自然语言处理经典任务
第二章:数据结构与算法基础
时间复杂度、空间复杂度
动态规划
贪心算法
各种排序算法
第三章:分类与逻辑回归
逻辑回归
最大似然估计
优化与梯度下降法
随机梯度下降法
第四章:模型泛化与调参
理解过拟合、防止过拟合
L1与L2正则
交叉验证
正则与MAP估计
第二部分:文本处理篇
第五章:文本预处理与表示
各类分词算法
词的标准化
拼写纠错、停用词
独热编码表示
tf-idf与相似度
分布式表示与词向量
词向量可视化与评估
第六章:词向量技术
独热编码的优缺点
分布式表示的优点
静态词向量与动态词向量
SkipGram与CBOW
SkipGram详解
Negative Sampling
第七章:语言模型
语言模型的作用
马尔科夫假设
UniGram, BiGram, NGram模型
语言模型的评估
语言模型的平滑技术
第三部分:序列模型篇
第八章:隐马尔科夫模型
HMM的应用
HMM的Inference
维特比算法
前向、后向算法
HMM的参数估计详解
第九章:线性条件随机场
有向图与无向图
生成模型与判别模型
从HMM与MEMM
MEMM中的标签偏置
Log-Linear模型介绍
从Log-Linear到LinearCRF
LinearCRF的参数估计
第四部分:深度学习与预训练篇
第十章:深度学习基础
理解神经网络
各种常见的激活函数
反向传播算法
浅层模型与深度模型对比
深度学习中的层次表示
深度学习中的过拟合
第十一章:RNN与LSTM
从HMM到RNN模型
RNN中的梯度问题
梯度消失与LSTM
LSTM到GRU
双向LSTM
双向深度LSTM
第十二章:Seq2Seq模型与注意力机制
Seq2Seq模型
Greedy Decoding
Beam Search
长依赖所存在的问题
注意力机制的实现
第十三章:动态词向量与ELMo技术
基于上下文的词向量技术
图像识别中的层次表示
文本领域中的层次表示
ELMo模型
ELMo的预训练与测试
ELMo的优缺点
第十四章:自注意力机制与Transformer
LSTM模型的缺点
Transformer概述
理解自注意力机制
位置信息的编码
理解Encoder和Decoder区别
理解Transformer的训练与预测
Transformer的缺点
第十五章:BERT与ALBERT
自编码介绍
Transformer Encoder
Masked语言模型
BERT模型
BERT的不同训练方式
ALBERT
第十六章:BERT的其他变种
RoBERTa模型
SpanBERT模型
FinBERT模型
引入先验知识
K-BERT
KG-BERT
第十七章:GPT与XLNet
Transformer Encoder回顾
GPT-1, GPT-2, GPT-3
ELMo的缺点
语言模型下同时考虑上下文
Permutation LM
双流自注意力机制
第五部分:信息抽取与知识图谱篇
第十八章:命名识别与实体消歧
信息抽取的应用和关键技术
命名实体识别
NER识别常用技术
实体统一技术
实体消歧技术
指代消解
第十九章:关系抽取
关系抽取的应用
基于规则的方法
基于监督学习的方法
Bootstrap方法
Distant Supervision方法
第二十章:句法分析
句法分析的应用
CFG介绍
从CFG到PCFG
评估语法树
寻找最好的语法树
CKY算法
第二十一章:依存文法分析
从语法分析到依存文法分析
依存文法分析的应用
基于图算法的依存文法分析
基于Transition-based的依存文法分析
依存文法的应用案例
第二十二章:知识图谱
知识图谱的重要性
知识图谱中的实体与关系
非结构化数据与构造知识图谱
知识图谱设计
图算法的应用
第六部分:模型压缩与图神经网络篇
第二十三章:模型的压缩
模型压缩重要性
常见的模型压缩总览
基于矩阵分解的压缩技术
基于蒸馏的压缩技术
基于贝叶斯模型的压缩技术
模型的量化
第二十四章:基于图的学习
图的表示
图与知识图谱
关于图的常见算法
Deepwalk和Node2vec
TransE图嵌入算法
DSNE图嵌入算法
第二十五章:图神经网络
卷积神经网络回顾
在图中设计卷积操作
图中的信息传递
图卷积神经网络
图卷积神经网络的经典应用
第二十六章:GraphSage与GAT
从GCN到GraphSAge
注意力机制回归
GAT模型详解
GAT与GCN比较
对于异构数据的处理
第二十七章:图神经网络的其他应用
Node Classification
Graph Classification
Link Prediction
社区挖掘
推荐系统
图神经网络的未来发展