自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(54)
  • 收藏
  • 关注

原创 BMR:基于Boostrapping多视图的虚假新闻检测

文章提出了三种视图信息来表示一篇新闻:文本、图像结构、图像语义。然后设计了改进的多门混合专家系统(iMMoE)来进行信息融合。保留单模态信息来保证特征对新闻的保真性,增加的多模态信息能保证不同模态的一致性,从而提高整体模型的识别能力。

2024-04-21 23:58:54 189

原创 MRHFR:基于不同阅读习惯的多模态虚假新闻检测

在多模态领域中,主要存在两个核心问题:一致性对齐问题和交互融合问题。一致性对齐问题主要指不同模态的信息匹配,例如实体对齐、语义对齐,例子有:文本中的“男人”与图片中男子指代一个人。交互融合问题指不同模态的信息如何进行合理的融合。本文提出一种新型的将新闻文本和图像两种模态进行融合的方法,以提升对虚假新闻的检测。本文虽然只使用了文本和图像的信息融合, 但是这种结合方法似乎可以运用到更多种模态的融合当中,这种混合使用各种模型,以一定逻辑组合在一起的模态融合方法似乎是一个很主流的研究方向。V_%7Bg%7D。

2024-04-21 23:24:32 600

原创 HG-SL:基于全局和局部用户行为的新闻

本文的主要目标是,仅通过用户行为来判断新闻的真伪。而基于用户行为(转发、好友建立)等操作可以识别出哪些用户是机器人,再以其行为去鉴别新闻的真假。

2024-04-07 23:17:33 754

原创 FaskSV:丰富背景知识+多模态的短视频新闻检测

在之前的新闻检测数据集中,存在数据量少、特征模态不够多、新闻涉及面单一等问题。在FakeSV数据集中,首次将用户(发布视频的人)信息也归为一种模态。最后该数据集的情况如下展示:首先注意到该数据集来源是抖音和快手,所以处理的语言就是中文。然后数据集所包含的领域是全领域的,并不像之前只关注健康或者疫情新闻。

2024-04-07 21:16:47 768

原创 第四章 基于社交网络的推荐系统

TrustWalker有着最低的错误率和最高的正确率。总结基于记忆的方法,其特点有:不需要学习模型,只是探索网络以查找评分者;需要存储社交评分网络;由于需要探索,在线预测消耗时间长。

2024-03-18 00:02:57 900

原创 第三章 混合推荐系统和推荐系统评价标准

混合推荐系统可以理解成集成学习应用到推荐系统中。而推荐系统的评价指标与正常的机器学习指标不同,需要额外记忆。

2024-03-10 21:06:00 398 1

原创 第二章 基于内容、知识的推荐系统

在推荐系统中,内容主要指对商品的文字描述,所以属于NLP领域,而不是CV领域。而最后提取到的内容是一系列关键词。基于内容和知识的两类推荐各有各的优势,但实际的技术手段是一样的,内容描述商品的关键词,知识描述商品的属性。

2024-03-10 19:16:21 376

原创 第一章 基于评分矩阵的推荐系统

1.推荐系统概要2.学习三种协同过滤的经典推荐系统3.学习各种方法改善协同过滤的推荐系统 作用:为用户定制化提供推荐信息。 原因:如今用户处在信息爆炸的时代,难以找到自己想要的信息。 难点:不像搜索引擎一样需要用户输入,而且需要针对不同用户个性化推荐。 即计算该用户历史上对一系列物品的评分取平均,作为其对当前一系列所对应未知物品的评分。选择前n个物品来作推荐。 寻找当前用户的一些相似邻居(他们的历史评分与当前用户的相似),这些邻居有对未知

2024-03-10 17:50:16 407

原创 第三章 学习基础知识

深度学习是一门有技术门槛的一门课,需要对机器学习有所了解且拥有学习经历才能学习下去。

2024-03-10 16:52:05 378

原创 第二章 卷积神经网络

本章只是简单介绍CNN的内容,以掌握基础知识为主,主要的知识会在后续讲解。

2024-03-10 16:28:10 876

原创 第一章 深度学习发展概述

了解深度学习的历史、著名算法结构、应用。

2024-03-10 14:59:15 432

原创 第二课 情感认知模型

本章的主要内容是要对情绪的形成进行建模,可以理解成如何得到一个情绪向量,基本情感论是认为该向量各个维度独立,是0/1值。维度空间各个维度也独立,但是是连续值。后面的情感模型则希望不对向量各维进行人工定义,而是想通过机器学习来得到。了解情感诱发机制则是帮助我们得到想要的数据信息。

2024-03-10 00:00:05 1017

原创 第一课 情感计算课程介绍与绪论

想要让理解情感,首先是要认识什么是情感,并对情感进行建模。在心理学中,情感包含三种内在成分和三种外在成分。内在成分指情绪的构成,其决定情绪的种类和强烈:理解情感、认识情感计算、了解情感计算的研究与应用。

2024-03-08 16:11:06 332

原创 自然语言处理(第17课 文本分类和聚类)

将文本分类,主要工作是让机器分析文章内容,辨别其类别。

2023-12-31 16:53:03 1092 1

原创 自然语言处理(第16课 机器翻译4、5/5)

语音翻译的基本原理相比大家都能猜到:将源语言识别出源文本、源文本转目标文本、目标文本转目标语音:(但是,要注意的是,源语言和目标语言的转换应该是双向的)

2023-12-28 15:22:48 739

原创 机器学习 (第9章 概率图模型)

对于一个很大的贝叶斯网络,我们需要有一个很高效的方法的快速辨别两个变量之间是不是独立的,但我们这里考虑条件独立性,条件独立性不同于独立性,条件独立性,必须要在某一条件下,考虑另外两个变量之间的独立性。在贝叶斯网络,其联合概率计算是由图来定义的,如下图1.所展示,而如果没有贝叶斯网络,我们无法了解各个变量之间是否有联系,就认为都有联系,于是列出的联合概率公式为0.所示。概率图模型基于图,而图这种数据结果分为两种:有向图和无向图,针对有向(无环)图结构,实现的是贝叶斯网络,针对无向图,则为马尔可夫随机场。

2023-12-25 13:28:31 1166

原创 机器学习(第8章 信息论模型)

要注意,信息量用于描述是一个变量取值的,比如:北京明天天气=下雪。而信息熵用于描述一个变量的,例如北京明天天气。之所以说微分熵不是信息熵,是因为信息熵应该计算概率值,而微分熵公式中的“概率值”并不是概率值,其是连续概率分布上的取值。真正的概率值是p(x)*δx,其中δx是一个极小的值。而真正的连续概率分布的信息熵推导如下:如红字所写,微分熵可以用于对比,但不能等价于信息熵。(红字错写成信息量了)重点学习熵相关定义和最大熵模型的优化过程。

2023-12-18 22:18:19 85

原创 自然语言处理(第15课 机器翻译3/5)

学习神经网络的进步性。学习RNN和注意力机制实现的机器翻译。

2023-12-18 14:52:31 52

原创 自然语言处理(第14课 机器翻译1、2/5)

规则越少,说明模型所需的先验知识越少,模型更强,但也可能导致模型最终的效果不好。

2023-12-18 14:14:28 49

原创 算法中的最优化方法与实现(第终章 总结)

1.学习将理论知识运用到实际问题的流程。2.总结学习过各类优化算法。

2023-12-16 19:58:56 34

原创 机器学习(第7章 降维与特征提取)

总结一下:(1)穷举法无法处理维度大的情况,于是提出(2)单独最优特征最优组合,但这种方法不考虑组合最优,为了改进,提出了(3)SFS和(5)SBS,而为了每次选取是更优的组合,提出(4)GSFS和(6)GSBS,而改进它们一旦决策就不修改的问题,提出了(7)L-R法和(8)广义L-R法。从数据的角度出发,数据的特征并不是全都有用的,总会存在没用的特征,消除这些特征是有必要的,是利于模型去训练的。一般来说,我们使用(1)的框架,如果我们的模型很大,对精度要求高,我们可以使用(2)。

2023-12-04 19:59:57 221

原创 机器学习(第6章 聚类分析)

作为一种无监督机器学习的方法,其优势在于模型小、速度快,属于对数据预处理的一种方法:即将数据类似的样本汇聚在一起。这样有助于后续任务的进行。具体描述如下:在不同的学科中,聚类算法有不同的称呼:在聚类任务中,必须保证以下三个条件:(1)每个类别一定都有样本点、(2)所有样本点必属于某一类、(3)某个样本点只能属于一类。

2023-12-04 18:10:47 52

原创 算法中的最优化方法与实现(第13课 动态规划)

现实中,并不是所有问题都是像前面学习过的问题那样可以用数学公式来表达,也存在一些问题不仅需要做一步决策,而是做多步决策来达到最优。针对上面的例子,原始的动态规划是从后往前递归求解的(在实际操作中,我们是正向来求解):第一步,保存从H->J和I->J的最高收益(红色字部分)。动态规划要想使用,就必须思考出问题中是否可以分阶段进行,每个阶段之间是否存在相互关联,这些关联是否能帮助我们求解出最后的结果。相比于动态优化,其就是多了一个状态概率化,作了一个决策后的状态变化是不确定的,是有概率跳转为不同的状态的。

2023-12-03 23:10:39 84

原创 算法中的最优化方法与实现(第12课 整数优化)

此外,如果有一个目前最优结果,那么可以在别的子树搜索时,根据当前结点的得分与目前最优结果得分对比,可以进行剪枝,减少搜索次数。而P5叶无需再往下衍生,P6也没有可行域,故P3也搜索完了,接下来应该要沿P4开始搜索,但是P4当前的值为7.83,大于目前最优值6.5,再往下搜索也不会低于6.5。LP放松实际上,就是把所有变量都认为是连续的,所以才说这样求解出的结果肯定被原问题更优,是原问题的下界。就是一个标准整数优化问题了,而这,还是一个比较简单的问题,因为变量还是离散的、非连续的。

2023-12-03 22:39:18 208

原创 算法中的最优化方法与实现(第11课 多目标优化问题)

由于整体最优的公式是人工定义的,这里就忽略这一点,于是当在红色曲线内移动时,总能保证一个F值在下降,就认为是帕里托最优解了)在单目标中(左图),我们的坐标轴是输入x,图案是约束函数范围,其中的等高线展示目标函数值(图中没画出)。在多目标中(右图),我们的坐标轴是多个目标函数,圈出的图案是约束函数目标函数的值空间,没有等高线。ε约束法的思想也很简单,就是对其他的目标函数加以约束,让其不小于ε,使这些目标函数变成约束函数,留下最后一个目标函数来作为真正的目标函数来求解它的最优解。1.了解多目标优化问题的描述。

2023-12-02 23:45:54 378

原创 自然语言处理(第13.5课 从NLP到NLU)

1.了解NLP与NLU的关系,认识NLP的问题2.学习语言的表征3.学习如何将神经信息解码成语言4.了解语义图谱的内容 只关注NLP与NLU,可以发现:NLU是NLP的深层技术,NLP只是处理语言信息,而NLU是要理解语言信息。而想要让机器理解语言信息,显然,我们只能从人脑的运行机能出发。(这里表明了,无论chatgpt多牛,它终究是NLP的产物,并不能真正理解语言信息。而我们目前依旧没搞懂人脑的运行机制,所以NLU还是一个基础的阶段) 主要是使用脑电图作为脑信息,然后将语言信息

2023-12-02 21:27:58 52

原创 自然语言处理(第13课 语义分析)

语义分析的任务,就是解释自然语言的句子或者篇章各部分(词、词组、句子、段落、篇章)的含义。就相当于给一篇文章给gpt,然后再问他问题,得到相关回答。语义分析的困难,在于三个点:相关的例子如下:(明明表面上是不一样的表达,语义表达确实相同的)

2023-11-30 18:22:56 158

原创 自然语言处理(第12.5课 篇章分析)

RST是语言学篇章表示理论中的一个经典表示方法,其思想是将原篇章尽可能进行切分成EDU,然后再两两结合,形成更大的EDU,最后合成整个语篇。于是,我们需要解决的任务有两个:(1)如何切分EDU,(2)如何确定EDU的关系。我们要得到的句子间的关系z,而我们能用到的输入特征有:两个句子的所有词的词向量。其中锚词识别,是用来分割句子的符号,其中以标点符号为主,还有句子中的“并”,“和”这种词。(2)过于依赖训练语料库(如第二句,训练语料库有许多美国和伊拉克的句子,而忽视句子讲的是伊朗)

2023-11-29 16:25:42 116

原创 自然语言处理(第12课 句法分析2/2)

在一节课中,我们学习了句法分析的短语结构分析方法,依存分析方法是另外一种句法分析方法。依存关系方法认为:(1)谓词中的动词是一个句子的中心,(2)其他成分与动词是直接或间接地产生联系。(3)依存不仅指动词对其他词的支配,而是普遍地指词与词之间的关系,这种关系是有方向的。(4)对于动词,根据其能支配几个行动元,定义其是几价动词。关于第(4)点,有以下例子:关于第(3)点,有以下例子:同样,我们可以用树结构来表示:(但一般还是上面的更常用)

2023-11-29 14:34:27 93

原创 机器学习 (第五章 回归分析)

回归任务的目标是,对于一系列数据(x,y),我们设计出一个模型f,使得f(x)=y。这不就是分类任务嘛?其实不一样,数据中的y不再是两类或者多类,而是有一定的规律性。而回归任务主要做的,其实是用一条曲线去串起这一系列数据。如下所示:当然,在二维中,这是一条曲线,在高维中,他就是一个超平面,训练数据的点则会落在这个超平面上。而回归问题的数学定义如下:而将分类问题与回归问题进行对比:实际上分类也可以看成是一个分类问题:而在实际应用中,回归模型比分类模型更弱:(1)手段有限,应用的场景太少。

2023-11-18 15:34:31 43

原创 算法中的最优化算法方法与实现(第10课 全局优化)

在对种族(即点的集合)的优胜劣汰中,其决定标准就是f(x)函数值,函数值越大,越有概率繁殖下一代,否则就被淘汰掉。而之所以无法使用之前的梯度下降法之类的方法,主要愿意在于:这个目标函数具有多个局部最优解,最好的办法是遍历所有点,才能找到问题最优。问题:算法计算量非常大,例如在上面的example中,n是x的维度,我们计算总量是10的200次方,计算时间是当前宇宙存在时间的10倍。思想:在变量空间中,随机取点(要求均匀分布且覆盖可行域),计算这些点的目标函数值并选择最小的作为最优解。

2023-11-17 18:56:40 801

原创 算法中的最优化方法和实现 (第8、9课 凸优化)

只有当目标函数和约束函数都是凸函数时,这个规划问题就是凸优化。

2023-11-17 17:54:14 236 1

原创 自然语言处理(第10、11课 句法分析1/2)

在讲CYK分析法前,需要大家回想起第2、3节课讲过的文法相关的知识。类似于我们之前在隐马尔科夫模型中用前向算法和反向算法求解问题一样。这个识别举证是CYK的关键点,长下面的样子:(w是词,pos表示其对应的非终结符)主要任务:识别句子中某些结构相对简单的独立成分。其中A、B、C的关系如下所示:(A、B、C都是句法树中的一个非叶子节点)其中句子的标签也一同输入到模型中,这样才能使模型能讲句子翻译成标签。一些例子:可以看出局部句法分析主要是找那些名词短语就行。该方法算是CYK的改进版。

2023-11-16 21:24:08 129

原创 自然语言处理(第9课 词语切分与词性标注)

在本章中,我们主要关注中文的分词任务。(1)过于依赖训练样本,鲁棒性太差。(生词识别)(2)训练样本太少,主要集中于新闻领域。(领域差异)

2023-11-16 19:39:05 221

原创 自然语言处理 (第8课 文本表示)

思路:一个短语由多个单词组成,将任意两个单词的词向量(A和B)线性组合成一个新的词向量C,最后就可以得到短语的向量表示,而且还可以通过线性分解将C分解成A'和B',目标就是追求A和A'、B和B'的差距最小,即重构误差最小。比如说有一个短文本A和长文本B,显然地,长文本包含了更多的词,也就使得其文本表示更大,但实际上,二者的表示信息是相同的,(比如B就是重复的多个A)所以引入归一化,使向量能规范化。其实,文本表示在字词级别上就是词向量,而在句子、文档级别中,也是用一个向量来表示一个句子、一个文档的意思。

2023-11-07 12:52:13 88

原创 机器学习 (第4章 非线性分类)

1.显然地,我们之前学习的线性分类法不可能将所有问题进行分类,而实际上,有许多问题是有明显的非线性的决策面进行分类,如下图:2.于是乎,提出非线性分类方法,按思想原理,可分为两种:线性拓展的方法实际上并不对原判别函数的参数进行变动,而是将输入x进行一定的变换,比如二次方化,幂函数化。而我们主要学习非线性思想的几种方法,且这几种方法并不是都是统一的思想原理。

2023-10-31 15:31:30 209 1

原创 算法中的最优化方法和实现 (第7课 有约束的非线性规划)

根据约束条件的类型,将问题分为4类:线性等式、非线性等式、线性不等式、非线性不等式。学习对于不同的问题,使用不同的方法进行求解。统一的思想都是消解法,即消去约束条件,。注意:我们说的非线性规划,说的是目标函数是非线性的,而上面讲的线性和非线性,指的是约束函数。

2023-10-29 22:12:44 345 1

原创 自然语言处理 (第6 7课 神经网络与语言模型)

(3)例子说明:假设我们的look-up表是一个2x5000的矩阵,即有5000个单词,每个词用二维词向量来表示,然后我们要求“这本书很”之后是“乏味”的概率:然后通过查词表、拼接,进行线性计算,得到一个二维结果:再进行非线性变换:最后得到(0.36,0.41)其实该包有一定含义:由于我们的单词用两位数据来表示,得到的二维数据说明词向量两个维度的权重。于是我们乘上look-up表得到各个词的分数:

2023-10-28 15:20:09 82 1

原创 算法中的最优化方法与实现 (第5 6课 无约束的非线性规划)

1.了解非线性问题的标准形式和各种求解方法2.学习牛顿法和拟牛顿法3.学习方向测定-线性最小方法4.学习各种搜索法。

2023-10-17 13:45:45 272

原创 自然语言处理 (第5课 N元文法模型)

1.N元文法模型的定义:历史基元是当前词语前面的词语。

2023-10-16 21:12:17 132 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除