模型评价指标(1)--混淆矩阵Confsion Matrix--PyTorch实现

习惯了转载进行Mark,现在是来还债时候了,一个一个补齐。

import torch

class ConfusionMatrix:
    def __init__(self, num_classes):
        """
        初始化混淆矩阵
        Args:
            num_classes (int): 类别数量
        """
        self.num_classes = num_classes
        self.matrix = torch.zeros((num_classes, num_classes), dtype=torch.int64)
    
    def update(self, preds, targets):
        """
        更新混淆矩阵
        Args:
            preds (torch.Tensor): 模型预测的类别标签,形状为 [N, ...]
            targets (torch.Tensor): 真实类别标签,形状需与 preds 一致
        """
        # 确保输入为一维张量
        preds = preds.flatten()
        targets = targets.flatten()
        
        # 确保数据类型为长整型
        preds = preds.to(torch.int64)
        targets = targets.to(torch.int64)
        
        # 过滤无效数据(标签超出类别范围)
        mask = (targets >= 0) & (targets < self.num_classes)
        targets = targets[mask]
        preds = preds[mask]
        
        # 计算线性索引
        indices = targets * self.num_classes + preds
        # 统计出现次数
        counts = torch.bincount(
            indices, 
            minlength=self.num_classes ** 2
        ).reshape(self.num_classes, self.num_classes)
        
        # 更新矩阵
        self.matrix += counts.to(self.matrix.device)
    
    def compute(self):
        """
        返回当前混淆矩阵
        """
        return self.matrix
   
    def reset(self):
        """
        重置矩阵
        """
        self.matrix.zero_()

# 示例用法
if __name__ == "__main__":
    num_classes = 3
    cm = ConfusionMatrix(num_classes)
    
    # 模拟数据(通常从数据加载器和模型获取)
    targets = torch.tensor([0, 1, 2, 0, 1, 2])
    preds = torch.tensor([0, 1, 1, 0, 2, 2])
    
    cm.update(preds, targets)
    matrix = cm.compute()
    
    print("Confusion Matrix:")
    print(matrix)
    
    # 输出解释:
    # matrix[i][j] 表示真实类别 i 被预测为类别 j 的次数

输出结果:

Confusion Matrix:
tensor([[2, 0, 0],
        [0, 1, 1],
        [0, 1, 1]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值