67-Hadoop-MapReduce-基本相关概念:
MapReduce 概述
1 MapReduce定义
MapReduce 是一个分布式运算程序的编程框架,是用户开发“基于 Hadoop 的数据分析
应用”的核心框架。
MapReduce 核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的
分布式运算程序,并发运行在一个 Hadoop 集群上。
MapReduce 优缺点
1优点
1)MapReduce易于编程
它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量
廉价的 PC 机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一
样的。就是因为这个特点使得 MapReduce 编程变得非常流行。
2)良好的扩展性 :动态增加服务器,解决计算资源不够问题,提升计算能力。
3)高容错性 :任何一台机器挂掉,可以将任务转移到其他节点。
MapReduce 设计的初衷就是使程序能够部署在廉价的 PC 机器上,这就要求它具有很高
的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,
不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由 Hadoop 内部完成的。
4)适合 PB/TB 级以上海量数据的离线处理 (几千台服务器共同计算)
可以实现上千台服务器集群并发工作,提供数据处理能力。
2 缺点
1)不擅长实时计算
MapReduce 无法像 MySQL 一样,在毫秒或者秒级内返回结果。分钟或者小时
2)不擅长流式计算(处理静态数据)spark,flink框架擅长
流式计算的输入数据是动态的,而 MapReduce 的输入数据集是静态的,不能动态变化。
这是因为 MapReduce 自身的设计特点决定了数据源必须是静态的。
3)不擅长 DAG(有向无环图)计算,spark擅长。
DAG:任务1的结果是任务2的入参,任务2的结果是任务3的入参。
多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,
MapReduce 并不是不能做,而是使用后,每个 MapReduce 作业的输出结果都会写入到磁盘,
会造成大量的磁盘 IO,导致性能非常的低下。
MapReduce 核心思想
(1)分布式的运算程序往往需要分成至少 2 个阶段。
(2)第一个阶段的 MapTask 并发实例,完全并行运行,互不相干。
(3)第二个阶段的 ReduceTask 并发实例互不相干,但是他们的数据依赖于上一个阶段
的所有 MapTask 并发实例的输出。
(4)MapReduce 编程模型只能包含一个 Map 阶段和一个 Reduce 阶段,如果用户的业
务逻辑非常复杂,那就只能多个 MapReduce 程序,串行运行。
总结:分析 WordCount 数据流走向深入理解 MapReduce 核心思想。
MapReduce 进程 (了解)
一个完整的 MapReduce 程序在分布式运行时有三类实例进程:
(1)MrAppMaster:负责整个程序的过程调度及状态协调。
(2)MapTask:负责 Map 阶段的整个数据处理流程。
(3)ReduceTask:负责 Reduce 阶段的整个数据处理流程。
官方 WordCount 源码
采用反编译工具反编译源码,发现 WordCount 案例有 Map 类、Reduce 类和驱动类。且
数据的类型是 Hadoop 自身封装的序列化类型。
下载,反编译。
主要分为编译,mapper,以及reduce。
package org.apache.hadoop.examples;
public class WordCount
{
public static void main(String[] args)
throws Exception
{
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; i++) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job, new Path(otherArgs[(otherArgs.length - 1)]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable>
{
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Reducer<Text, IntWritable, Text, IntWritable>.Context context)
throws IOException, InterruptedException
{
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
this.result.set(sum);
context.write(key, this.result);
}
}
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>
{
private static final IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Mapper<Object, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException
{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, one);
}
}
}
}
常用数据序列化类型
MapReduce 编程规范
用户编写的程序分成三个部分:Mapper、Reducer 和 Driver。
1.Mapper阶段
(1)用户自定义的Mapper要继承自己的父类
(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)
(3)Mapper中的业务逻辑写在map()方法中
(4)Mapper的输出数据是KV对的形式(KV的类型可自定义)
(5)map()方法(MapTask进程)对每一个<K,V>调用一次(一行数据调用一次)
2.Reducer阶段
(1)用户自定义的Reducer要继承自己的父类
(2)Reducer的输入数据类型对应Mapper的输出数据类型,也是KV
(3)Reducer的业务逻辑写在reduce()方法中
(4)ReduceTask进程对每一组相同k的<k,v>组调用一次reduce()方法
3.Driver阶段 (后续实操以及yarn继续了解学习)
相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是
封装了MapReduce程序相关运行参数的job对象
ucer的业务逻辑写在reduce()方法中
(4)ReduceTask进程对每一组相同k的<k,v>组调用一次reduce()方法
[外链图片转存中…(img-0WLW3Zhy-1668934307908)]
3.Driver阶段 (后续实操以及yarn继续了解学习)
相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是
封装了MapReduce程序相关运行参数的job对象
Hadoop-MapReduce-workcount入门:
WordCount 案例
本地测试
1)需求
在给定的文本文件中统计输出每一个单词出现的总次数
(1)输入数据
atguigu atuguigu
ss ss
cls cls
jiao
banzhang
xue
hadoop
(2)期望输出数据(注意排序)
atguigu2,bangzhang1,cls2,hadoop1,jiao1,ss2,xue1
)环境准备
(1)创建 maven 工程,MapReduceDemo
(2)在 pom.xml 文件中添加如下依赖
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
</dependencies>
(2)在项目的 src/main/resources 目录下,新建一个文件,命名为“log4j.properties”,在
文件中填入。
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
(3)创建包名:com.atguigu.mapreduce.wordcount
编写程序
mapper编写
package com.zh.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* 关注输入和输出,与业务,注意包的路径是否正确
* KEYIN,map阶段输入的key的类型:偏移量,LongWritable
* VALUEIN, map阶段输入的value类型:Text
* KEYOUT, map阶段的输出的key类型:Text
* VALUEOUT,map阶段的输出的value类型:Int
*/
public class WordCountMapper extends Mapper<LongWritable, Text,Text, IntWritable> {
private Text outK = new Text();//性能,不能再循环一直new,内存
private IntWritable outV = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1获取一行
String line = value.toString();
//2切割
String[] words = line.split(" ");
//3.循环写出
for(String word : words){
//封装
outK.set(word);
//写出
context.write(outK,outV);
}
}
}
reducer
package com.zh.mapreduce.wordcount;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
/**
* 关注输入和输出,与业务,注意包的路径是否正确
* KEYIN,reduce阶段输入的key的类型:偏移量,Text
* VALUEIN,reduce阶段输入的value类型:IntWritable
* KEYOUT, reduce阶段的输出的key类型:Text
* VALUEOUT,reduce阶段的输出的value类型:IntWritable
*/
public class WordCountReducer extends Reducer<Text, IntWritable,Text, IntWritable> {
private IntWritable outV = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;//累加
//AAA,(1,1)
for (IntWritable value : values) {
sum += value.get();
}
outV.set(sum);
//写出
context.write(key,outV);
}
}
Reducer(注意包的路径)
package com.zh.mapreduce.wordcount;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WorkCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
//1.获取job
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
//2.设置jar包路径
job.setJarByClass(WorkCountDriver.class);
//3.关联mapper和reducer
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
//4.设置map输出的k,v类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
//5.设置最终输出的k,v类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//6.设置输入路径和输出路径
FileInputFormat.setInputPaths(job, new Path("E:\\input"));
FileOutputFormat.setOutputPath(job, new Path("E:\\output1"));
//7.提交到job
boolean result = job.waitForCompletion(true);//监控和打印job信息
System.exit(result ? 0 : 1);
}
}
5)本地测试
(1)需要首先配置好 HADOOP_HOME 变量以及 Windows 运行依赖
(2)在 IDEA/Eclipse 上运行程序
part-r-00000内容
提交到集群测试
集群上测试
(1)用 maven 打 jar 包,需要添加的打包插件依赖
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
打包上传服务器
执行(jar包driver的类的全路径,输入,输出)
[root@hadoop102 hadoop-3.1.4]# hadoop jar wordcount.jar com.zh.mapreduce.wordcounttwo.WorkCountDriver /input /ouput