19-hive-数据类型-DDL:
基本数据类型
Hive 数据类型 | Java 数据类型 | 长度 | 例子 |
---|---|---|---|
TINYINT | byte | 1byte 有符号整数 | 20 |
SMALINT | short | 2byte 有符号整数 | 20 |
INT | int | 4byte 有符号整数 | 20 |
BIGINT | long | 8byte 有符号整数 | 20 |
BOOLEAN | boolean | 布尔类型,true 或者false | TRUE FALSE |
FLOAT | float | 单精度浮点数 | 3.14159 |
DOUBLE | double | 双精度浮点数 | 3.14159 |
STRING | string | 字符系列。可以指定字符集。可以使用单引号或者双引号。 | ‘ now is the time ’ “for all good men” |
TIMESTAMP | 时间类型 | ||
BINARY | 字节数组 |
对于 Hive 的 String 类型相当于数据库的 varchar 类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储 2GB 的字符数。
集合数据类型
数据类型 | 描述 | 语法示例 |
---|---|---|
STRUCT | 和 c 语言中的 struct 类似,都可以通过“点”符号访问元素内容。例如,如果某个列的数据类型是 STRUCT{first STRING, last STRING},那么第 1 个元素可以通过字段.first 来 | struct()例 如 struct<street:string, city:string> |
MAP | MAP 是一组键-值对元组集合,使用数组表示法可以访问数据。例如,如果某个列的数据类型是 MAP,其中键->值对是’first’->’John’和’last’->’Doe’,那么可以通过字段名[‘last’]获取最后一个元素 | map()例如 map<string, int> |
ARRAY | 数组是一组具有相同类型和名称的变量的集合。这些变量称为数组的元素,每个数组元素都有一个编号,编号从零开始。例如,数组值为[‘John’, ‘Doe’],那么第 2 个元素可以通过数组名[1]进行引用。 | Array()例如 array |
Hive 有三种复杂数据类型 ARRAY、MAP 和 STRUCT。ARRAY 和 MAP 与 Java 中的 Array
和 Map 类似,而 STRUCT 与 C 语言中的 Struct 类似,它封装了一个命名字段集合,复杂数据
类型允许任意层次的嵌套。
测试
(1)假设某表有如下一行,用 JSON 来表示结构。在Hive 下访问的格式为
{
"name": "songsong",
"friends": ["bingbing" , "lili"] , //列表 Array,
"children": { //键值 Map,
"xiao song": 18 ,
"xiaoxiao song": 19
}
"address": { //结构 Struct,
"street": "hui long guan",
"city": "beijing"
}
}
(2)基于上述数据结构,在 Hive 创建对应表,并导入数据。
创建本地测试文件 test.txt
songsong,bingbing_lili,xiao song:18_xiaoxiao song:19,hui long guan_beijing
yangyang,caicai_susu,xiao yang:18_xiaoxiao yang:19,chao yang_beijing
注意:MAP,STRUCT 和 ARRAY 里的元素间关系都可以用同一个字符表示,这里用“_”。
(3)Hive 上创建测试表 test
create table test_v1(
name string,
friends array<string>,
children map<string, int>,
address struct<street:string, city:string>
)
row format delimited fields terminated by ','
collection items terminated by '_'
map keys terminated by ':'
lines terminated by '\n';
字段解释:
row format delimited fields terminated by ‘,’ – 列分隔符
collection items terminated by ‘_’
–MAP STRUCT 和 ARRAY 的分隔符(数据分割符号)
map keys terminated by ‘:’
– MAP 中的 key 与 value 的分隔符
lines terminated by ‘\n’;
– 行分隔符
(4)导入文本数据到测试表
[root@hadoop102 hive]# hadoop fs -put datas/test.text /user/hive/warehouse/test_v1
或者
load data local inpath ‘/opt/module/hive/datas/test.txt’ into table test;
(5)访问三种集合列里的数据,以下分别是 ARRAY,MAP,STRUCT 的访问方式
select friends[1],children['xiao song'],address.city from test_v1 where name="songsong";
类型转换
Hive 的原子数据类型是可以进行隐式转换的,类似于 Java 的类型转换,例如某表达式
使用 INT 类型,TINYINT 会自动转换为 INT 类型,但是 Hive 不会进行反向转化,例如,某表
达式使用 TINYINT 类型,INT 不会自动转换为 TINYINT 类型,它会返回错误,除非使用 CAST
操作。
1)隐式类型转换规则如下
(1)任何整数类型都可以隐式地转换为一个范围更广的类型,如 TINYINT 可以转换成
INT,INT 可以转换成 BIGINT。
(2)所有整数类型、FLOAT 和 STRING(Integer.parse) 类型都可以隐式地转换成 DOUBLE。
(3)TINYINT、SMALLINT、INT 都可以转换为 FLOAT。
(4)BOOLEAN 类型不可以转换为任何其它的类型。
2)可以使用 CAST 操作显示进行数据类型转换
例如 CAST(‘1’ AS INT)将把字符串’1’ 转换成整数 1;如果强制类型转换失败,如执行CAST(‘X’ AS INT),表达式返回空值 NULL。
select ‘1’+2, cast('1’as int) + 2;
DDL数据定义
查库 show databases;
显示表 show tables;
显示表的创建语句(使用了默认) show create table table_name;
1、创建数据库
语法
CREATE DATABASE [IF NOT EXISTS] database_name
[COMMENT database_comment] #注释
[LOCATION hdfs_path] #指定当前库创建到那个目录,默认user/warehouse
[WITH DBPROPERTIES (property_name=property_value, ...)];# 列名称,参数名称,参数值
创建一个数据库,指定数据库在 HDFS 上存放的位置
create database db_hive2 location ‘/db_hive2.db’;
2、查看-切换表
查所有数据库 show databases;
过滤查数据库 show databases like ‘hive*’;
查数据库信息 desc database hive_v1;
显示数据库详细 desc database extended hive_v1;
切换数据库 use database_name;
3、修改数据库
ALTER DATABASE 命令为某个数据库的 DBPROPERTIES 设置键-值对属性值
hive (default)> alter database hive_v1 set dbproperties('createtime'='2021-02-03');
4、删除数据库
drop database db_hive2;
drop database if exists db_hive2;
drop database db_hive cascade;
1)删除空数据库
hive>drop database db_hive2;
2)如果删除的数据库不存在,可采用if exists 判断数据库是否存在
hive> drop database db_hive;
FAILED: SemanticException [Error 10072]: Database does not exist: db_hive
hive> drop database if exists db_hive2;
3)如果数据库不为空,可以采用 cascade 命令,强制删除
hive> drop database db_hive;
FAILED: Execution Error, return code 1 from
org.apache.hadoop.hive.ql.exec.DDLTask.
InvalidOperationException(message:Database db_hive is not empty. One or
more tables exist.)
hive> drop database db_hive cascade;
表
创建表(内部表,外部表)
语法
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name #external分内部和外部表
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]#表的注释
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]#创建分区表
[CLUSTERED BY (col_name, col_name, ...)#分桶表
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]#和分桶表有关,排序
[ROW FORMAT row_format]#定义行的限制,格式
[STORED AS file_format]#文件格式
[LOCATION hdfs_path]#hdfs路径,表的位置信息
[TBLPROPERTIES (property_name=property_value, ...)]#额外属性
[AS select_statement]#通过查询的方式建表
管理表与外部表
内部表会删除数据和hive元数据,外部表只删除hive元数据。
hive (hive_v1)> create external table table_v1(id string);
默认创建的表都是所谓的管理表,有时也被称为内部表。因为这种表,Hive 会(或多或少地)控制着数据的生命周期。Hive 默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir(如,/user/hive/warehouse)所定义的目录的子目录下。当我们删除一个管理表时,Hive 也会删除这个表中数据。管理表不适合和其他工具共享数据。
管理表与外部表的互相转换
(1)查询表的类型
hive (default)> desc formatted student2;
Table Type: MANAGED_TABLE
(2)修改内部表 student2 为外部表
alter table student2 set tblproperties('EXTERNAL'='TRUE');
(3)查询表的类型
hive (default)> desc formatted student2;
Table Type: EXTERNAL_TABLE
(4)修改外部表 student2 为内部表
alter table student2 set tblproperties('EXTERNAL'='FALSE');
(5)查询表的类型
hive (default)> desc formatted student2;
Table Type: MANAGED_TABLE
注意:(‘EXTERNAL’=‘TRUE’)和(‘EXTERNAL’=‘FALSE’)为固定写法,区分大小写!
指定行格式,指定分隔符。
hive (hive_v1)> insert into table_v2 values(1001,‘zhangsan’);
hive (hive_v1)> create table table_v3(id int,name string) row format delimited fields terminated by ‘,’;
修改表
重命名表ALTER TABLE table_name RENAME TO new_table_name
增加/修改/替换列信息
(1)更新列
ALTER TABLE table_name CHANGE [COLUMN] col_old_name col_new_name
column_type [COMMENT col_comment] [FIRST|AFTER column_name]
hive (hive_v1)> alter table table_v4 change id stu_id string;
hive (hive_v1)> alter table table_v4 change stu_id id string;
(2)增加和替换列,修改的是元数据
ALTER TABLE table_name ADD|REPLACE COLUMNS (col_name data_type [COMMENT
col_comment], ...)
注:ADD 是代表新增一字段,字段位置在所有列后面(partition 列前),REPLACE 则是表示替换表中所有字段。replace需要写全。
hive (hive_v1)> alter table table_v4 add columns (name string);
hive (hive_v1)> alter table table_v4 replace columns (stu_id string);
删除表 drop table table_name;
学习路径:https://space.bilibili.com/302417610/,如有侵权,请联系q进行删除:3623472230