58-hive-数据类型-分区:
分区表(将数据分开放,理解市区,指定分区更快,避免全数据扫描,提高查询效率,对hive的一种优化)
分区表实际是对应一个 HDFS 文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。Hive 中的分区就是分目录,把一个大的数据集根据业务需要分割成小的数据集。在查询时通过 WHERE 子句中指定分区,提高查询效率。
create table dept_partition(deptno int,dname string,loc string) partitioned by (day string) row format delimited fields terminated by ‘\t’;
准备数据
#dept_20200401.log
10 ACCOUNTING 1700
20 RESEARCH 1800
#dept_20200402.log
30 SALES 1900
40 OPERATIONS 1700
#dept_20200403.log
50 TEST 2000
60 DEV 1900
建表时添加分区
create table dept_partition(deptno int,dname string,loc string) partitioned by (day string) row format delimited fields terminated by '\t';
加载数据(修改1,2,3)
load data local inpath '/opt/module/hive/datas/dept_20200401.log' into table dept_partition partition(day='20200401');
查询
select * from dept_partition where day='20200401';
增加分区
创建单个分区
hive (default)> alter table dept_partition add partition(day='20200404');
同时创建多个分区
hive (default)> alter table dept_partition add partition(day='20200405') partition(day='20200406');
删除分区
删除单个分区
hive (default)> alter table dept_partition drop partition (day='20200406');
同时删除多个分区
hive (default)> alter table dept_partition drop partition (day='20200404'),partition(day='20200405');
二级分区(两级目录)
创建
create table dept_partition2(deptno int, dname string, loc string) partitioned by (day string, hour string) row format delimited fields terminated by '\t';
加载数据到二级分区(修改1,2,3,hour12,13,14)
load data local inpath '/opt/module/hive/datas/dept_20200401.log' into table dept_partition2 partition(day='20200401',hour='12');
把数据直接上传到分区目录上,让分区表和数据产生关联的三种方式
(1)方式一:上传数据后修复,直接mkdir不会再元数据分区表中增加相关信息
hive (default)> dfs -mkdir -p /hive_db/dept_partition2/day=20200401/hour=13;
hive (default)> dfs -put /opt/module/datas/dept_20200401.log /hive_db/dept_partition2/day=20200401/hour=13;
修复
msck repair table dept_partition2;
(2)方式二:上传数据后添加分区
hive (default)> dfs -mkdir -p /hive_db/dept_partition2/day=20200401/hour=14;
hive (default)> dfs -put /opt/module/hive/datas/dept_20200401.log /hive_db/dept_partition2/day=20200401/hour=14;
执行添加分区
hive (default)> alter table dept_partition2 add partition(day='20200401',hour='14');
(3)方式三:创建文件夹后 load 数据到分区,会直接在元数据中添加分区信息
创建目录
hive (default)> dfs -mkdir -p /hive_db/dept_partition2/day=20200401/hour=15;上传数据
hive (default)> load data local inpath '/opt/module/hive/datas/dept_20200401.log' into table
dept_partition2 partition(day='20200401',hour='15');
load如果不指定分区信息,会有个默认的。了解即可。
load data local inpath ‘/opt/module/hive/datas/dept.txt’ into table dept_partition;
动态分区调整
关系型数据库中,对分区表 Insert 数据时候,数据库自动会根据分区字段的值,将数据插入到相应的分区中,Hive 中也提供了类似的机制,即动态分区(Dynamic Partition),只不过,使用 Hive 的动态分区,需要进行相应的配置。
1)开启动态分区参数设置
(1)开启动态分区功能(默认 true,开启)
hive.exec.dynamic.partition=true
(2)设置为非严格模式(动态分区的模式,默认 strict,表示必须指定至少一个分区为
静态分区,nonstrict 模式表示允许所有的分区字段都可以使用动态分区。)
hive.exec.dynamic.partition.mode=nonstrict
(3)在所有执行 MR 的节点上,最大一共可以创建多少个动态分区。默认 1000
hive.exec.max.dynamic.partitions=1000
(4)在每个执行 MR 的节点上,最大可以创建多少个动态分区。该参数需要根据实际的数据来设定。比如:源数据中包含了一年的数据,即 day 字段有 365 个值,那么该参数就需要设置成大于 365,如果使用默认值 100,则会报错。hive.exec.max.dynamic.partitions.pernode=100
(5)整个 MR Job 中,最大可以创建多少个 HDFS 文件。默认 100000
hive.exec.max.created.files=100000
(6)当有空分区生成时,是否抛出异常。一般不需要设置。默认 false
hive.error.on.empty.partition=false
2)案例
需求:将 dept 表中的数据按照地区(loc 字段),插入到目标表 dept_partition 的相应分区中。
(1)创建目标分区表
hive (default)> create table dept_partition_dy(id int, name string) partitioned by (loc int) row format delimited fields terminated by ‘\t’;
(2)设置动态分区(分区信息是查询中的最后一个,loc的位置)
set hive.exec.dynamic.partition.mode = nonstrict;
hive (default)> insert into table dept_partition_dy partition(loc) select deptno, dname, loc from dept;
(3)查看目标分区表的分区情况
hive (default)> show partitions dept_partition;
分桶表(了解,分区表是分目录,分桶表是将数据分开)
分区提供一个隔离数据和优化查询的便利方式。不过,并非所有的数据集都可形成合理的分区。对于一张表或者分区,Hive 可以进一步组织成桶,也就是更为细粒度的数据范围划分。分桶是将数据集分解成更容易管理的若干部分的另一个技术。分区针对的是数据的存储路径;分桶针对的是数据文件。
#创建
create table stu_buck(id int, name string) clustered by(id) into 4 buckets row format delimited fields terminated by '\t';
#查看表结构
desc fromatted stu_buck;
#导入数据,注意是不是local还是hdfs路径
load data local inpath '/opt/module/hive/datas/student.txt' into table stu_buck;
分桶规则:
根据结果可知:Hive 的分桶采用对分桶字段的值进行哈希,然后除以桶的个数求余的方
式决定该条记录存放在哪个桶当中
#使用insert方式将数据导入分桶表
hive(default)>insert into table stu_buck select * from student;
抽样查询
对于非常大的数据集,有时用户需要使用的是一个具有代表性的查询结果而不是全部结果。Hive 可以通过对表进行抽样来满足这个需求。语法: TABLESAMPLE(BUCKET x OUT OF y)
查询表 stu_buck 中的数据。
hive (default)> select * from stu_buck tablesample(bucket 1 out of 4 on id);
注意:x 的值必须小于等于 y 的值,否则
ve 可以通过对表进行抽样来满足这个需求。语法: TABLESAMPLE(BUCKET x OUT OF y)
查询表 stu_buck 中的数据。
hive (default)> select * from stu_buck tablesample(bucket 1 out of 4 on id);
注意:x 的值必须小于等于 y 的值,否则