Environment Sensitivity-based Cooperative Co-evolutionary Algorithms for Dynamic Multi-objective Optimization
基于环境敏感度的动态多目标协同进化算法
https://ieeexplore.ieee.org/document/7817874/citations?tabFilter=papers
一、介绍
-将一个具有大规模决策变量的优化问题分解为若干个决策变量数量较少的子问题
-每个子问题由一个子群体进行优化
-每个子群体在相应的搜索空间中寻找其最优解
-通过将当前子种群的最优解与每代剩余子种群的最优解相结合,构造出一个完整的解,即原始优化问题的候选者。
二、整体框架
三、相关工作
其中,
支配:
PS:
PF:
如何分解决策变量并构造一个完整的解是CCEA的两个关键问题。
四、基于环境敏感度的合作协同进化策略
根据决策变量与环境变量之间的相互关系,将整个决策变量分为两个子分量。
例如:
True PF:
分组:
定义:一个函数是部分可加可分的,满足
其中,
是决策变量
的子分量,并且
是分量的数量。具体地说,如果
,则称
为完全可加可分(简称完全可分)。


把环境变量看成一个公共决策变量,如
,然后根据定理计算
中第D+ 1个变量和其它变量之间
的关系,将和不可分的决策变量放在第一组。

方程式中只使用与X1相关的变量。最后,将P1中的N2个随机个体替换为N2个新个体,并在搜索空间中对P1中的其余个体进行随机初始化,以提高P1的多样性。
利用柯西变异方法对优化的种群
初始化部分,大小为
新个体产生为:
最后,将P2中的N3个随机个体替换为N3个新个体,并在搜索空间中对P2中的其余个体进行随机初始化,以提高P2的多样性。
本文中,
B.算法流程图
C.两种改进的合作协同进化算法


















