Spark on Yarn 高可用模式部署流程

一、引言

Spark是一个用于大规模数据分析处理的分布式计算框架,适用于快速处理大数据的场景。Yarn是一个资源调度框架,用于集群资源的调度和管理。Spark 的任务也可以提交到Yarn中运行,由Yarn进行资源调度。在生产环境中,为了避免单点故障导致整个集群不可用的情况,一个很好的方式就是部署一个HA高可用的运行环境。

二、环境

1、 前提环境

配置高可用,首先要保证下面三个环境能正常运行。

  • yarn集群
  • spark集群
  • zookeeper集群

2、zookeeper作用

以zookeeper在Spark集群中为例,在Yarn集群中也是同样的作用。

  • Master节点的高可用性

Spark 高可用中,会有多个个Master节点,zookeeper会协助管理哪些Master节点是活动的,哪些是备份的。

  • Master节点的选举机制

Spark 高可用中,使用zookeeper来实现Master节点的选举。在Spark集群中有多个Master节点时,zookeeper会确保只有一个节点是活跃的。一旦当前主节点失败,zookeeper会重新选举出一个新的Master节点,保证集群正常运行。

  • 保存元数据和配置信息

    Zookeeper用来保存和共享Spark集群的配置信息、状态、集群的元数据。当Master节点切换时,可以做到数据同步。

Zookeeper在集群中通过Master节点选举和故障恢复来确保集群的稳定运行。通过使用Zookeeper,可以有效的避免单点故障,在Master发生异常时自动切换,保证计算任务正常运行。

三、Yarn HA 配置

1、首先执行stop-yarn.sh,停止现有的yarn环境

2、在yarn-site.xml中,添加如下配置

<configuration>
        <property>
                <name>yarn.nodemanager.aux-services</name>
                <value>mapreduce_shuffle</value>
        </property>
        <!-- 开启RM高可用 -->
        <property>
                <name>yarn.resourcemanager.ha.enabled</name>
                <value>true</value>
        </property>
        <!-- 指定RM的cluster id -->
        <property>
                <name>yarn.resourcemanager.cluster-id</name>
                <value>yrc
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xhaoDream

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值