机器学习实战
文章平均质量分 93
黯色百合
这个人不懒,他忙的什么都没有留下。
展开
-
读书笔记:机器学习实战【第3章 决策树】
读书笔记:机器学习实战【第3章 决策树】决策树的优点: 计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。缺点: 可能会产生过度匹配问题适用数据类型:数值型,标称型。3.1 决策树的构造在构造决策树时,要解决的第一个问题就是,当前数据集上哪个特征在划分数据分类的时候起决定作用。为了找到决定性特征,划分出最好的结果,我们必须苹果每个特征,而完成测试之后,原始数据集就被原创 2017-08-21 12:13:29 · 705 阅读 · 0 评论 -
读书笔记:机器学习实战【第4章:朴素贝叶斯】
读书笔记:机器学习实战【第4章:朴素贝叶斯】4.1 基于贝叶斯决策理论的分类方法朴素贝叶斯: 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据朴素贝叶斯是贝叶斯决策理论的一部分,贝叶斯决策理论的核心思想是选择具有最高概率的决策。4.2 条件概率4.3 使用条件概率分类基本都是最基本的概率论知识,跳过。4.4 使用朴素贝叶原创 2017-08-26 14:46:38 · 413 阅读 · 0 评论 -
读书笔记:机器学习实战【第7章:利用Adaboost元算法提高分类性能】
利用Adaboost元算法提高分类性能当做重要决定的时候,大家可能都会考虑吸取多个专家,而非一个人的意见,同样的思想用在机器学习中就是元算法(meta-algorithm)背后的思路,元算法是对其他算法进行组合的一种方式。7.1 基于数据集多重抽样的分类器前面已经介绍了五种不同的分类算法,它们各有优缺点,我们自然可以将不同的分类器组合起来,而这种组合结果则被称为集成方法(ensemble metho原创 2017-09-16 19:46:13 · 725 阅读 · 0 评论 -
读书笔记:机器学习实战【第5章:Logistic回归】
利用Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。Logistic回归的一般过程: 收集数据 准备数据:要求数据类型为数值型,结构化则最佳。 分析数据:采用任意方法对数据进行分析。 训练算法:大部分时间将用于训练,目的是找到最佳的分类回归系数。 测试算法:一旦训练步骤完成,分类就会很快。 使用算法:首先我们需要一些输入数据,并将其转换成对应的结构化数值原创 2017-09-08 17:06:42 · 506 阅读 · 0 评论