自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 资源 (1)
  • 收藏
  • 关注

原创 【腾讯、阿里、平安】面经第二弹来袭,赶快点赞收藏吧QAQ!!!

阿里(三面)(asir)岗位:保险技术部的算法工程师-机器学习职位1、 实习经历介绍,比如会问,具体所作的业务,自己在团队中承担的角色,自己的工作产出占比等,然后会问为什么想要离开原来的实习公司等。2、 比赛经历介绍,挑一个自己觉得做的好的比赛详细介绍,主要问到使用的方法,主要问到模型的构建,算法层面有没有改进。3、机器学习与深度学习基本没问。4、相互交流,一定要把握住交流的机会,多问问将来要去的组是做什么的,业务是什么。阿里(hr面)(asir)岗位:保险技术...

2021-03-27 15:08:50 251 1

原创 【腾讯、阿里、字节等】面经第一弹来袭,赶快点赞收藏吧QAQ!!!

腾讯(一面)(asir)岗位:机器学习、数据挖掘算法实习生1、 项目经历介绍2、 比赛经历介绍,挑一个自己觉得做的好的比赛详细介绍,主要问到使用的方法,与前几名的差距,有没有思考进一步的优化等3、机器学习的基础知识: - 决策树的分裂原则- 逻辑回归公式推导- SVM是如何优化的- gbdt与xgboost的区别,要写xgb的推导公式- xgboost与lightgbm的区别,说出三点,详细解释其中一点。4、深度学习的基础知识:...

2021-03-27 15:06:32 220

原创 “梧桐杯”中国移动大数据应用创新大赛 - 智慧金融赛道开源方案

方案该开源方案在初赛A榜成绩为0.948,初赛B榜为0.940。仅为大家开阔思路使用,希望对大家有一定的帮助。任务描述防羊毛党评分模型旨在从普通用户中区分出羊毛党用户号码。开源代码这里以初赛A榜的处理为例第一步是处理一下数据格式问题import pandas as pdimport numpy as npdata = pd.read_csv("data/data_a.csv")label = pd.read_csv("data/train_label.csv")to_

2021-03-21 00:20:52 1077 1

原创 【grokking·Deep Learning】读书笔记一

本栏目的书籍地址:https://pan.baidu.com/s/1SjeTPu0H7sjRiI6zJIh_tg提取码:virq在本书的第一章,主要提出了三个问题。 为什么要学习深度学习? 为什么要读这本书? 如何入门? 一、为什么要学习深度学习?这是用于智能增量自动化的强大工具。从一开始,人类就在建立越来越多的工具来理解和控制我们周围的环境。深度学习是这个创新故事的今天。也许使本章如此引人注目的是,该领域更多是一种精神创新而不是机械创新。...

2021-03-14 23:25:39 724

原创 CCF-BDCI基于买方意向的货物撮合交易-方案分享

感谢starry老哥的投稿,下面就来介绍本次比赛的背景任务和他优秀的解决思路吧(文末附有136分的完整代码链接哦)!!!赛题链接链接赛题背景期货市场上的货物卖方和货物的买方期望通过期货市场进行货物买卖,达到买卖双方钱货交换的目的(买方从卖方获取货物并向卖方支付对应货款)。赛题任务卖方客户已公布需要卖出的货物具体信息,如表格1所示。表格 1 卖方已公布货物信息买方客户群体确定,买方客户根据自身需求,并根据卖方客户已公布的货物信息,申报所需购买货物的意向(如表格2所示),当..

2021-03-07 11:26:30 507

原创 新网银行金融科技挑战赛 AI算法赛道 亚军方案

团队介绍:TensorSlow开发组 致Great:中科院计算所,擅长深度学习 lrhao:腾讯数据分析师,有着丰富比赛经验,多项比赛大满贯 SJF:大一新生,充满无限创意与活力 pumpkin:同济大学,腾讯算法工程师,深度洞察数据 1、赛事背景2020年“创青春·交子杯”新网银行金融科技挑战赛-AI算法赛道,旨在鼓励选手运用前沿的人工智能技术解决金融科技等领域中的实际问题,激发选手创新能力,增强其动手能力。比赛挑战题目为“看见你的呼吸”,该项技术可应用于金融在线业务

2021-03-07 11:21:42 459

原创 百万奖金赛事之(时间序列)供水管网压力预测--方案分享

一、赛题描述链接主办方提供某新区供水管网数据,数据划分如下:训练集:2018至2019年的30个压力监测点近两年的压力数据、2018年至2019年的天气数据,以及标明了30个压力监测点位置的供水管网互通图。测试集:以下4段时间的每小时的压力数据、每天的天气数据,需要分别去预测对应日期每小时的压力数据。注1:压力监测点数值中数值为0或者负数时为非有效数值。注2:压力数据,每小时1条数据记录;气象数据,每天1条数据记录。注3:选手不能利用“未来的实际数据...

2021-03-07 11:07:54 422

原创 如何对集成树进行解释?

1、介绍集成树(tree-based ensemble learning)中,最有名的就是随机森林树(Random Forest,简称RF)与梯度提升树(Gradient Boosting Trees,简称GBM)。而近年在Kaggle 竞赛平台中最火红的XGBoost 也是基于GBM 所延伸出来的演算法。在解释集成树有三个非常好用的方法:特征重要度(Feature Importance)部分相依图(Partial Dependence Plot,简称PDP)个体条件期望图(Individual C

2021-03-01 10:02:40 319

原创 基于LSTM的美国大选的新闻真假分类【NLP 新年开胃菜】

简介新闻媒体已成为向世界人民传递世界上正在发生的事情的信息的渠道。 人们通常认为新闻中传达的一切都是真实的。 在某些情况下,甚至新闻频道也承认他们的新闻不如他们写的那样真实。 但是,一些新闻不仅对人民或政府产生重大影响,而且对经济也产生重大影响。 一则新闻可以根据人们的情绪和政治局势上下移动曲线。从真实的真实新闻中识别虚假新闻非常重要。 该问题已通过自然语言处理工具解决并得到了解决,本篇文章可帮助我们根据历史数据识别假新闻或真实新闻。问题描述对于印刷媒体和数字媒体,信息的真实性已成为影响企业和社会的

2021-02-27 12:40:46 2254 2

原创 违约风险相关比赛的建议

违约风险相关比赛的建议关于类似比赛的有意思讨论还有很多,大家有时间可以阅读下Home Credit Default Risk比赛中第一名Silogram的帖子:https://www.kaggle.com/c/home-credit-default-risk/discussion/58332由于我们为每个申请人提供了历史数据,因此这在一定程度上是一个时序问题。这意味着最新数据比旧数据更相关。人们的信用问题有很多随机性,这意味着每折数据之间存在很多差异。尝试不同的K折实验设置,以查看您的模型是否稳定

2021-02-27 11:57:03 100

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除