中缀转后缀:
- 后缀表达式适合计算式进行运算,人不容易写出来,尤其是表达式很长的情况下,因此在开发中,我们需要将中缀表达式转换成后缀表达式。
具体步骤如下:
先初始化两个栈:运算符栈s1和储存中间结果的栈s2;
从左至右扫描中缀表达式;
如若遇到操作数时,将其压入s2中
遇到运算符时,比较其与s1栈顶运算符的优先级:
(1)如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
(2)否则,若优先级比栈顶运算符的高,也将运算符压入s1;
(3)将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较;
package DataStructures.stack;
import com.sun.org.apache.bcel.internal.generic.IADD;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
//完成一个中缀表达式转成后缀表达式
//中缀表达式
//1.(3+4)*5-6 =>3 4 + 5 * 6 -
//2.因为直接对str进行操作,先将这个字符串转成中缀表达式对应的list
//3.(3+4)*5-6 =>ArrayList[(,3,+,4,),*,5,-,6]
//4.将得到的中缀表达式对应的List =》后缀表达式对应的list
//即ArrayList[(,3,+,4,),*,5,-,6] =》3 4 + 5 * 6 -
String expression = "(3+4)*5-6";
List<String> infixExpression = toInfixExpression(expression);
System.out.println("中缀表达式对应的list:"+infixExpression);
List<String> suffixExpressionList = parseSuffixExpressionList(infixExpression);
System.out.println("后缀表达式对应的list:"+suffixExpressionList);
System.out.printf("expression=%d",calculate(suffixExpressionList));
}
//即ArrayList[(,3,+,4,),*,5,-,6] =》3 4 + 5 * 6 -
public static List<String> parseSuffixExpressionList(List<String> ls) {
//定义两个栈
Stack<String> s1 = new Stack<String>();//存储符号栈
//Stack<String> s2 = new Stack<String>();//在分析过程中没有弹栈的操作,只是入栈
//因为s2在这个栈中,没有pop操作,而且后面还要逆序输出,直接使用ArrayList正常输出
List<String> s2 = new ArrayList<String>();//储存中间结果的List2
//遍历我们的ls
for (String item : ls) {
//如果是一个数,加入s2
if (item.matches("\\d+")) {
s2.add(item);
} else if (item.equals("(")) {
s1.push(item);
} else if (item.equals(")")) {
//如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2中,直到遇到左括号为止,此时将这一对括号丢弃
//peek查看栈顶的内容,不弹出
while (!s1.peek().equals("(")) {
s2.add(s1.pop());
}
s1.pop();//将(弹出s1栈,消除小括号
} else {
//当s1栈顶的运算符的优先级,若优先级小于等于栈顶的运算符的优先级,
// 就应该将s1中运算符弹出并加入s2栈中
//问题:缺少一个比较优先级高低的方法
while (s1.size() != 0 && Operation.getValue(s1.peek()) >= Operation.getValue(item)) {
s2.add(s1.pop());
}
//还需要将item压入栈中
s1.push(item);
}
}
//将s1中剩余的运算符依次弹出并加入s2
while(s1.size() !=0){
s2.add(s1.pop());
}
return s2;//注意因为是存放到list,因此按顺序输出就是对应的后缀表达式对应的list
}
//方法:将中缀表达式转成对应的list
public static List<String> toInfixExpression(String s) {
//先定义一个list。存放中缀表达式对应的内容
List<String> ls = new ArrayList<String>();
int i = 0;//这是一个指针,用于遍历中缀表达式字符串
String str;//对多位数的拼接工作
char c;//每遍历到一个字符,就放入到c中
do {
//如果c是一个非数字,我们就需要加入到ls中,
if ((c = s.charAt(i)) < 48 || (c = s.charAt(i)) > 57) {
ls.add("" + c);
i++;//i需要后移
} else {
//如果是一个数需要考虑多位数的问题
str = "";//先将str置空 ""
while (i < s.length() && (c = s.charAt(i)) >= 48 && (c = s.charAt(i)) <= 57) {
str += c;//进行拼接
i++;
}
ls.add(str);
}
} while (i < s.length());
return ls;//返回
}
//将一个逆波兰表达式,一次将数据和运算符放入到ArrayList中
public static List<String> getListString(String suffixExpression) {
//将suffixExpression 分割
String[] split = suffixExpression.split(" ");
List<String> list = new ArrayList<String>();
for (String ele : split) {
list.add(ele);
}
return list;
}
//完成对逆波兰表达式的运算
/*
思路:
*1.从左至右扫描,将3和4压入栈
* 2.遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,将7入栈
* 3.将5入栈
* 4.接下来是*运算符,因此弹出5和7,计算出5*7,再将35入栈
* 5.将6入栈
* 6.最后是-运算符,就散出35-6,将29输出,即得出最终结果
*
* */
public static int calculate(List<String> ls) {
//创建一个栈,只需要一个栈即可
Stack<String> stack = new Stack<String>();
//遍历ls
for (String item : ls) {
//这里使用一个正则表达式取出数
if (item.matches("\\d+")) {
//匹配的是多位数
//入栈
stack.push(item);
} else {
//pop出两个数字,并运算,再入栈
int num2 = Integer.parseInt(stack.pop());
int num1 = Integer.parseInt(stack.pop());
int res = 0;
if (item.equals("+")) {
res = num1 + num2;
} else if (item.equals("-")) {
res = num1 - num2;
} else if (item.equals("*")) {
res = num1 * num2;
} else if (item.equals("/")) {
res = num1 / num2;
} else {
throw new RuntimeException("运算符有误");
}
//把res入栈
stack.push(res + "");
}
}
//最后在stack中的数据是结果
return Integer.parseInt(stack.pop());
}
}
//编写一个类 Operation 可以返回一个运算 对应的优先级
class Operation {
private static int ADD = 1;
private static int SUB = 1;
private static int MUL = 2;
private static int DIV = 2;
//写一个方法返回优先级数字
public static int getValue(String operation) {
int result = 0;
switch (operation) {
case "+":
result = ADD;
break;
case "-":
result = SUB;
break;
case "*":
result = MUL;
break;
case "/":
result = DIV;
break;
default:
//throw new RuntimeException("有问题");
//System.out.println("优先级有问题");
break;
}
return result;
}
}