自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 KF/EKF/UKF/PF汇总

1]秦永元. 卡尔曼滤波与组合导航原理[M]. 西北工业大学出版社, 2021.一、Kalman Filter。

2025-07-07 14:21:05 207

原创 针对线性卡尔曼滤波中噪声为非正态分布的改进措施

在卡尔曼滤波中,噪声的非正态分布(如重尾、偏态或有界分布)会导致传统算法性能下降。:通过滑动窗口或指数加权实时估计噪声协方差(如 Sage-Husa 自适应滤波)。:联合估计状态和噪声分布参数(如逆Wishart分布建模协方差不确定性)。:动态调整噪声的统计特性(协方差矩阵),适应非平稳或未知分布。:通过调整滤波算法对异常值的敏感度,降低非正态噪声的影响。:复杂噪声分布(如多峰、强偏态),且计算资源充足。:噪声可分解为多个高斯模态(如混合高斯噪声)。:重尾噪声(如脉冲噪声)或测量中存在离群值。

2025-08-12 16:05:30 279

原创 强跟踪滤波算法(Strong Tracking Filter, STF)

一、数学模型强跟踪滤波算法在卡尔曼滤波的基础上,引入了渐消因子,通过卡尔曼增益使残差系列正交。其核心思想是通过实时调整滤波器增益,使残差序列始终保持正交性,从而实现对系统突变状态的快速跟踪。一、数学模型1.状态方程​2.观测方程​其中:​​。

2025-08-12 15:05:40 408

原创 晶格卡尔曼滤波(Lattice Kalman Filter)

LKF 通过格型规则和随机平移技术,将非线性滤波中的积分问题转化为确定性采样点求和,显著降低了计算负担,同时保持了估计精度。优势与性能计算效率:仅需 N=5 个格型点即可达到与 UKF(需 9 个点)相近的精度。数值稳定性:格型规则避免直接矩阵求逆,适合高维系统。适用性:特别适合非线性系统(如航空航天模型)的多维积分近似。方法采样点数计算复杂度适用场景LKF5低非线性高维系统UKF9中一般非线性系统使用Deepseek生成相关代码%% 清空工作区clc;clear;

2025-08-01 13:44:07 689

原创 乘性平方根扩展卡尔曼滤波(MSF-EKF)

MSF-EKF(乘性平方根扩展卡尔曼滤波)是一种改进的EKF(扩展卡尔曼滤波)算法,主要用于非线性系统状态估计,特别适用于数值稳定性要求高的场合。它结合了平方根滤波(Square-root Filtering)和乘性噪声处理技术,相比标准EKF具有更好的数值鲁棒性。

2025-07-28 01:30:11 392

原创 加权卡尔曼滤波

加权卡尔曼滤波融合,它通过给不同传感器或估计结果分配不同的权重,来提高状态估计的精度和可靠性。

2025-07-27 15:17:35 990 1

原创 二阶广义卡尔曼滤波(SOEKF)

二阶广义卡尔曼滤波(Second-Order Extended Kalman Filter, SOEKF)是对标准扩展卡尔曼滤波(EKF)的改进,通过引入二阶泰勒展开来更精确地处理非线性系统的状态估计问题。

2025-07-25 14:12:26 513

原创 自适应卡尔曼滤波(AKF)

目的:自适应卡尔曼滤波(Adaptive Kalman Filter, AKF)是标准卡尔曼滤波的扩展,旨在解决实际系统中过程噪声协方差矩阵 Q 和量测噪声协方差矩阵 R 未知或时变的问题。其核心思想是根据实时滤波结果动态调整 Q 和 R,以提高状态估计的鲁棒性和精度。

2025-07-22 00:43:25 415

原创 学习笔记--IEKF(迭代卡尔曼滤波)

迭代卡尔曼滤波(Iterated Extended Kalman Filter, IEKF)是扩展卡尔曼滤波(EKF)的一种改进算法,旨在解决EKF在处理强非线性系统时因线性化误差较大导致的估计精度下降问题。其核心思想是:在同一个测量更新时刻,多次迭代优化状态估计和误差协方差,每次迭代都在当前最优估计处重新线性化非线性函数,从而减少线性化误差。

2025-07-21 14:49:31 985

原创 主成成分分析法(principal components analysis,PCA)

PCA(principal components analysis)即技术,又称主分量分析,旨在利用的思想,把多指标转化为少数几个综合指标。在统计学中,分析PCA是一种简化的技术。它是一个。这个变换把到一个新的中,使得任何数据投影的第一大方差在第一个坐标(称为)上,第二大方差在第二个坐标(第二主成分)上,依次类推。经常用于减少数据集的,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。

2025-07-17 20:36:55 38

原创 CKF(容积卡尔曼滤波)

容积卡尔曼滤波(CKF)是由加拿大学者Arasaratnam和Haykin在2009年提出的。该算法的核心思想是针对非线性高斯系统,通过三阶球面径向容积准则来近似状态的后验均值和协方差,以保证在理论上以三阶。EKF的缺陷:需要计算雅可比矩阵(线性化误差大);CKF采用三阶球面径向容积规则来求取2n个容积点。逼近任何非线性高斯状态的后验均值和方差。④计算状态量预测值及误差协方差预测值。⑨增益更新,状态量,误差协方差。个Sigma点,而CKF仅需。UKF的冗余:UKF使用。⑧量测误差协方差和协方差。

2025-07-10 15:55:27 462

原创 学习笔记:PF(粒子滤波)

粒子滤波(Particle Filter, PF)是一种基于蒙特卡洛方法(Monte Carlo, MC)的非线性、非高斯贝叶斯滤波算法。它通过一组随机样本(粒子)来近似状态的后验概率分布,适用于传统卡尔曼滤波(KF/EKF/UKF)难以处理的复杂系统。

2025-07-09 20:16:35 1132

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除