拉格朗日乘子法

搬运工
在求解最优化问题中,拉格朗日乘子法(Lagrange Multiplier)和KKT(Karush Kuhn Tucker)条件是两种最常用的方法。在有等式约束时使用拉格朗日乘子法,在有不等约束时使用KKT条件。

这里提到的最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题)。提到KKT条件一般会附带的提一下拉格朗日乘子。对学过高等数学的人来说比较拉格朗日乘子应该会有些印象。二者均是求解最优化问题的方法,不同之处在于应用的情形不同。

拉格朗日乘数法(Lagrange multiplier)有很直观的几何意义。举个2维的例子来说明:假设有自变量x和y,给定约束条件g(x,y)=c,要求f(x,y)在约束g下的极值。我们可以画出f的等高线图,如下图。此时,约束g=c由于只有一个自由度,因此也是图中的一条曲线(红色曲线所示)。显然地,当约束曲线g=c与某一条等高线f=d1相切时,函数f取得极值。两曲线相切等价于两曲线在切点处拥有共线的法向量。因此可得函数f(x,y)与g(x,y)在切点处的梯度(gradient)成正比。于是我们便可以列出方程组求解切点的坐标(x,y),进而得到函数f的极值。
1 与原点的最短距离假如有方程:图像是这个样子滴:

现在我们想求其上的点与原点的最短距离:

这里介绍一种解题思路。首先,与原点距离为 的点全部在半径为 的圆上:

那么,我们逐渐扩大圆的半径:

显然,第一次与 相交的点就是距离原点最近的点:

此时,圆和曲线相切,也就是在该点切线相同:

至此,我们分析出了:2 等高线为了继续解题,需要引入等高线。这些同心圆:

可以看作函数 的等高线:

根据梯度的性质(关于梯度可以查看如何通俗地理解梯度?),梯度向量:是等高线的法线:
另外一个函数 的等高线为:
之前的曲线 就是其中值为3的等高线:

因此,梯度向量:也垂直于等高线 :

梯度向量是等高线的法线,更准确地表述是:3 拉格朗日乘子法3.1 求解根据之前的两个分析:综合可知,在相切点,圆的梯度向量和曲线的梯度向量平行:

也就是梯度向量平行,用数学符号表示为:还必须引入 这个条件,否则这么多等高线,不知道指的是哪一根:

因此联立方程:求一下试试:这就是拉格朗日乘子法。3.2 定义要求函数 在 约束下的极值这种问题可以表示为: 意思是subject to,服从于,约束于的意思。可以列出方程组进行求解:用这个定义来翻译下刚才的例子,要求:令:求:联立方程进行求解:3.3 变形这个定义还有种变形也比较常见,要求:定义:求解下面方程组即可得到答案:把等式左边的偏导算出来就和上面的定义是一样的了。3.4 多个约束条件如果增加一个约束条件呢?比如说:求:从图上看约束条件是这样的:

很显然所求的距离是这样的:

那这三者的法线又有什么关系呢? 的法线是 和 的法线的线性组合:

假设:那么线性组合就表示为:联立方程:即可求解。往更高纬度走的话,多约束条件的情况下,问题变为了 围成的曲线 和 相切,直观上看 必然在 张成的空间中:

这点的严格性这里就不证明了。文章最新版本在(有可能会有后续更新):如何理解拉格朗日乘子法?编辑于 2018-07-31予人玫瑰,手有余香赞赏8 人已赞赏​已赞同 1505​​64 条评论​分享​收藏​喜欢​收起​lemonvisual state estimation256 人赞同了该回答为什么出现拉格朗日乘子法?最短路径问题从几何意义中获得灵感:从数学公式中获得灵感推广到高维空间------------------------------------------------------一个最短路径问题

假设你在M点,需要先到河边(上图右侧曲线 )再回到C点,如何规划路线最短?假设: 河流曲线满足方程 g(x,y) = 0 (例如 如果它是一个圆: )用P表示河边上的任意P(x,y)点,用d(M,P)表示M,P之间距离,那么问题可以描述为: , 约束于 如何求解问题? 1. 从几何意义中获得灵感:首先,f§是一个标量(只有大小没有方向),那么在上图的二维空间中必然存在了一个标量场f§,即对于每一个点P都对应着一个f§值,它代表经过该点的路径总和是多少。如果我们画出它的等值线(场线),就会发现它呈椭圆向外辐射:

显然,f§的等值线与河边曲线的交点P即为我们想求的点。那么问题来了: 这样的点满足何种性质? (如果没有性质也就无法列出关系式进行求解,但是这么特殊的点极有可能存在良好某种特性)最直观的性质: 等值线(椭圆)在P点的法向量n与河边曲线的法向量m平行:

而在多元微积分中,一个函数h在某一点P的梯度是点P所在等值线(二维)或等值面(三维)的法向量,即,所以对于函数 f , g : (注意 梯度是一个向量,准备在另一个问题中对梯度的概念做详细阐述)即由相交点的性质我们得到了2个关系式(因为是二维平面,对于三维则可以得到三个关系式,以此类推),再加上我们的约束条件:一共3个关系式,由线性代数中知识可知 3个关系式,3个未知量()极有可能有唯一解,当然也不排除会出现多个解甚至无穷多解 (例如 下图 河边是一条直线,且M,C就在河边时)。(关于这个知识点稍后在其它答案中给出解释)。

2. 从数学公式中获得灵感仍人是问题: 我们知道在多元微积分中如果想求一个函数的极值一般的做法是把 ,如何把这个公式和我们的约束条件 统一在一起呢?答案是: 引入 并且定义一个新的函数: ,令: 与我们要求解的优化问题是 等价的: 因为: 与约束条件等价,而且此时 即拉格朗日函数与我们的目标函数 取相同值。 用拉格朗日函数把目标函数和约束条件统一在了一起。 实际上这种方法与上面的几何方法是完全等价的:
3. 3. 推广到高维空间以上我们一直在讨论 二维的情形,下面让我们看看这个问题的高维情况: 以几何观点为例:假设约束条件变成 ,其中 h是紫色椭球面, g是平面。它们相交于黑色的环,且在相交线上(黑色环)各自的方向向量() 与相交线垂直。对于我们的目标函数 ,下图中红色椭球是它的等值面。它与黑色环的交点 ,此处的向量
4. 更高维度同理。
主要内容转载自知乎如何理解拉格朗日乘子法? - 马同学的回答 - 知乎
https://www.zhihu.com/question/38586401/answer/457058079

其他参考:
https://www.cnblogs.com/mo-wang/p/4775548.html
用于个人学习记录,侵删

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值