Portia---一款开源可视化爬虫工具

文介绍Portia的学习使用

背景

由于最近在写一个可供配置的爬虫模板,方便快速扩展新的抓取业务,并且最后目标是将其做成一个可视化的配置服务。还正在进行中,并且有点没有头绪,所以想参考网上现有的轮子,看看能不能找到点新的思路。

安装

Docker安装完成后拉去portia服务项目

# < ..FOLDER> 路径自定义即可 , 可在后面加上portia的版本
docker run -i -t --rm -v <PROJECTS_FOLDER>:/app/data/projects:rw -p 9001:9001 scrapinghub/portia

# git上是如下语句
docker run -v ~/portia_projects:/app/data/projects:rw -p 9001:9001 scrapinghub/portia

具体可参考官方文档

使用Portia包
新建project

Portia安装完成以后使用浏览器打开http://localhost:9001, 在create a new project 中输入项目名
在这里插入图片描述
点击 New spider 创建一个新的spider
右边侧栏会提示你输入一个url,Portia会将网页的url作为一个start page。
这个start page一般被用来当做seek(种子),用来获得更多的链接。

在这里插入图片描述
Portia支持创建 page sample(页面样本),当你创建了一个页面样本,就可以调度后面的任务按照你设定的模板抓取元素。(所以我们需要先创建这样的模板)

page sample
创建了sample之后,我们可以开始注释页面。注释会将页面中的一条数据链接到项目字段。这些即是我们想要提取的数据

在这里插入图片描述

字段命名,选择数据类型
在这里插入图片描述
Portia默认遵循所有域内URL。在许多情况下,您需要限制Portia将访问的页面,以便不会在不相关的页面上浪费请求。
为此,您可以分别设置跟随和排除白名单和黑名单URL的模式。可以通过将爬网策略更改为来配置这些。Configure URL patterns
在这里插入图片描述

到此操作结束

可以在最右侧看到我们选中的项目,将所有需要提取的items注释完之后,关闭样本。Close Sample,如果以后需要再添加其他元素,继续配置此样本,方便后续的抓取。

最后,我们可以在右边看到我们需要的数据,json如下格式

启动程序

我们配置好了sample page和start pages,那么就要开始抓取数据了,也就是将数据保存到json文件或者数据库中。这里我们保存成json文件

官方给出的代码如下

docker run -i -t --rm -v PROJECTS_FOLDER:/app/data/projects:rw -v OUPUT_FOLDER:/mnt:rw -p 9001:9001 scrapinghub/portia \ 
portiacrawl /app/data/projects/PROJECT_NAME SPIDER_NAME -o /mnt/RESULT.json

其中可以更改的是大写的那些部分:PROJECTS_FOLDER / OUPUT_FOLDER / PROJECT_NAME / SPIDER_NAME / RESULT.json
依次是: 项目名 / 输出目录 / project的名字 / Spider名字 / 保存结果的文件

启动程序前必须先关闭Portia的调试页面,这里我直接使用kill命令,因为我在docker启动的终端按下ctrl+c 或 crtl+z都无效,只能用进程关闭

例如,我的启动代码如下:

docker run -i -t --rm -v ~/portia_projects:/app/data/projects:rw -v ~/result:/mnt:rw -p 9001:9001 scrapinghub/portia \ 
portiacrawl /app/data/projects/tingyun tingyun.site -o /mnt/tingyun.json

运行成功就能看见代码在飞快地跑了,而且都是我们想要的items

总结

到此,我们就结束了这一次使用Portia的抓取之旅,通过使用Portia确实能实现很快速简易的抓取功能,能将抓取过程可视化得呈现给操作者,还有其他有趣的功能在后续的学习中遇到再次分享给大家,接下来会去考虑试着将其用到一些大规模的抓取上,看看到底效果如何

  • 6
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Scrapy是一个强大的Python网络爬虫框架,具有以下优点: 1. 高效性:Scrapy采用异步的方式进行网络请求和数据处理,可以同时处理多个请求,提高爬取效率。它还支持并发请求和请求优先级调度,能够更好地利用网络带宽和系统资源。 2. 可扩展性:Scrapy提供了丰富的中间件、插件和扩展机制,可以根据需求进行定制化开发。它支持自定义下载中间件、爬虫中间件、管道和扩展等,方便扩展功能和实现个性化的爬虫需求。 3. 灵活性:Scrapy提供了灵活的数据提取和处理机制。它结合了XPath和CSS选择器,可以方便地定位和提取网页中的数据。同时,Scrapy还支持使用正则表达式或自定义的解析器进行数据解析,适应不同的数据结构和数据提取需求。 4. 自动化:Scrapy提供了自动化的功能,可以自动处理URL跟踪、请求重试、错误处理、Cookies管理等。它还支持设置定时任务、调度器、增量式爬取等,实现爬虫的自动化运行和管理。 5. 多功能:Scrapy不仅仅是一个网络爬虫框架,它还提供了数据处理、数据存储和数据导出的功能。通过定义Item类和编写Pipeline,可以方便地将爬取到的数据存储到数据库、文件或其他存储介质中,并支持多种数据格式的导出。 6. 社区支持:Scrapy拥有庞大的用户社区和活跃的开发者社区,有丰富的文档、教程和示例代码可供参考。无论是初学者还是有经验的开发者,都可以在社区中获得帮助和分享经验。 7. 可视化界面:Scrapy提供了可视化的调试界面Scrapy Shell,可以方便地进行调试、测试和数据提取。同时,还有一些第三方工具(如Scrapinghub、Portia等)可以与Scrapy配合使用,提供更便捷的爬虫管理和可视化操作。 综上所述,Scrapy具有高效性、可扩展性、灵活性、自动化、多功能等优点,是一个强大且广泛应用的网络爬虫框架。它适用于各种规模和复杂度的爬虫项目,并且能够提供稳定可靠的爬取能力和数据处理能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值