535844609
码龄8年
关注
提问 私信
  • 博客:3,970
    3,970
    总访问量
  • 8
    原创
  • 1,174,723
    排名
  • 1
    粉丝
  • 0
    铁粉

个人简介:一个程序猿

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
  • 加入CSDN时间: 2017-01-07
博客简介:

qq_37278786的博客

查看详细资料
个人成就
  • 获得3次点赞
  • 内容获得0次评论
  • 获得7次收藏
创作历程
  • 7篇
    2021年
  • 1篇
    2019年
成就勋章
TA的专栏
  • 机器学习基础及项目摘要
    4篇
  • NLP
    2篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习tensorflow数据分析
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

卷积神经网络

全连接神经网络对mnist数据集有着不错的表现,mnist数据集的分辨率只用28*28,是单通道的图片。但是在实际生活中图片的分辨率会很大,并且是彩色三通道图片。实际应用时会先对原始图像进行特征提取,再把提取到的特征送入全连接神经网络,让全连接的神经网络识别出结果。卷积过程介绍卷积计算可认为是一种有效提取特征的方法。一遍会用一个正方形的卷积核,按指定步长,在输入特征图上滑动,遍历输入特征图中每一个像素点。每一个步长卷积核会与输入特征出现重合区域,重合区域对应元素相乘,对应元素相乘并求和再加上
原创
发布博客 2021.05.22 ·
188 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

神经网络在mnist数据集上的实现

mnist数据集是70000张28*28像素的图片,其中60000张用来训练,10000张用于测试。mnist数据集探索:import tensorflow as tffrom matplotlib import pyplot as pltmnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data()# 可视化训练集输入特征的第一个元素plt.imshow(x_train[0],
原创
发布博客 2021.05.21 ·
292 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

使用class写带有跳连的非顺序网路结构

tf.Sequential()只能构建顺序网络结构,即上一层的输出作为下一层的输入。如果想要构建跳连的非顺序网络结构,需要使用class类构建网络结构。代码示例:import tensorflow as tffrom tensorflow.keras.layers import Densefrom tensorflow.keras import Modelfrom sklearn import datasetsimport numpy as npx_train = datasets.load
原创
发布博客 2021.05.21 ·
270 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

六步法搭建神经网络(tensorflow.Sequential顺序网络结构)

六步法importtrain,testmodel = tf.keras.models.Sequentialmodel.compilemodel.fitmodel.summarymodel = tf.keras.models.Sequential([网络结构])常见网络结构举例拉直层:tf.keras.layers.Flatten()全连接层:tf.keras.layers.Dense(神经元个数, activation=‘激活函数’, kernel_regularizer=正则化方式)
原创
发布博客 2021.05.20 ·
587 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python中的zip函数

zip()函数将可迭代对象作为参数。按照第一维度打包成元组,返回打包成元组的列表。l1 = [1, 2, 3, 4]l2 = ['a', 'b', 'c']# l1 与 l2长度不一致时按最短长度打包元组for i in zip(l1, l2): print(i)# 输出# (1, 'a')# (2, 'b')# (3, 'c')# *理解为解压,与zip功能相反l3 = [[1, 'a'], [2, 'b'], [3, 'c']]for i in zip(*l3):
原创
发布博客 2021.05.14 ·
230 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tf.keras.preprocessing.text.Tokenizer笔记

tensorflow中的Tokenizer函数
原创
发布博客 2021.05.17 ·
1626 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

NLP中unicode文本处理

NLP中unicode文本处理Unicode字符标转化将unicode文件转化为ascii。import unicodedatadef unicode_to_ascii(s): return ''.join(c for c in unicodedata.normalize('NFD', s))在标点与单词之间加入空格def preprocess_sentence(s): import re # 需要处理的标点 punctuation = ',.?!' pre
原创
发布博客 2021.05.14 ·
214 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

python多进程处理文件

Python多进程处理文件如果你处理的文件之间相互之间没有影响,并且产生的结果相互独立,即不会产生脏数据。可以用进程池的方法加快处理速度。下面是一个例子,你们可以根据自己的需求改写代码。import import concurrent.futuresdef fun(i): count = 0 while True: if count > i * 99999999: ...
原创
发布博客 2019.10.29 ·
559 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏