学习笔记6-ML(classify)-Logistics Regression

1.Logistics Regression

考虑这样一个问题:
当一堆给定的数据集 X X X分别只属于class1和class2,那么对于另一个给定测试数据集 x x x X X X不包含 x x x,那么 x x x中各个数是class1的概率是多少?

1.1 分类的定义及实用情形

在回归问题中,会预测连续值;而在分类问题中,预测离散值。

每个数据点都会获得标注,如类别标签或与数值相关的标签。

1.2 分类的要素

  • Model
    对于输入的 x x x,带入相应函数,进行分类。
    x → { g ( x ) > 0 , o u t p u t = c l a s s 1 e l s e    , o u t p u t = c l a s s 2 x\rightarrow \begin{cases} g\left( x \right) >0, output=class1\\ else\,\, , output=class2\\ \end{cases} x{ g(x)>0,output=class1else,output=class2
  • loss function
    L ( f ) = ∑ δ ( f ( x ( n ) ) ≠ y ( n ) ) L\left( f \right) =\sum{\delta \left( f\left( x^{\left( n \right)} \right) \ne y^{\left( n \right)} \right)} L(f)=δ(f(x(n))=y(n))
  • 最优化
    如感知机,SVM等

2. 通过Generative模型得到问题的求解

2.1 前期知识复习及补充

2.1.1 全概率公式及贝叶斯公式

如图所示:

在这里插入图片描述

已知两个类别,对于随机取出一个的球x(表颜色),其在class1(C1比如表示蓝色)中的概率计算方法为:
P ( C 1 ∣ x ) = P ( x ∣ C 1 ) P ( C 1 ) P ( x ∣ C 1 ) P ( C 1 ) + P ( x ∣ C 2 ) P ( C 2 ) P\left( C_1|x \right) =\frac{P\left( x|C_1 \right) P\left( C_1 \right)}{P\left( x|C_1 \right) P\left( C_1 \right) +P\left( x|C_2 \right) P\left( C_2 \right)} P(C1x)=P(xC1)P(C1)+P(xC2)P(C2)P(xC1)P(C1)
取出的x的概率为:
P ( x ) = P ( x ∣ C 1 ) P ( C 1 ) + P ( x ∣ C 2 ) P ( C 2 ) P\left( x \right) =P\left( x|C_1 \right) P\left( C_1 \right) +P\left( x|C_2 \right) P\left( C_2 \right) P(x)=P(xC1)P(C1)+P(xC2)P(C2)

对于n个类别则有:
P ( C 1 ∣ x ) = P ( x ∣ C 1 ) P ( C 1 ) ∑ i = 1 n P ( x ∣ C i ) P ( C i ) P\left( C_1|x \right) =\frac{P\left( x|C_1 \right) P\left( C_1 \right)}{\sum_{i=1}^n{P\left( x|C_i \right) P\left( C_i \right)}} P(C1x)=i=1nP(xCi)P(Ci)P(xC1)P(C1)
P ( x ) = ∑ i = 1 n P ( x ∣ C i ) P ( C i ) P\left( x \right) =\sum_{i=1}^n{P\left( x|C_i \right) P\left( C_i \right)} P(x)=i=1nP(xCi)P(Ci)

2.1.2 高维高斯分布

推导过程见:多维高斯分布
f μ , Σ ( x ) = 1 ( 2 π ) D / 2 1 ∣ Σ ∣ 1 / 2 e − 1 2 ( x − μ ) Σ − 1 ( x − μ ) T f_{\mu ,\varSigma}\left( x \right) =\frac{1}{\left( 2\pi \right) ^{D/2}}\frac{1}{|\varSigma |^{1/2}}e^{-\frac{1}{2}\left( x-\mu \right) \varSigma ^{-1}\left( x-\mu \right) ^T} fμ,Σ(x)=(2π)D/21Σ1/21e21(xμ)Σ1(xμ)T

其中, x x x表示维度为 D 的向量, μ \mu μ则是这些向量的平均值(不同数据的相同维度计算平均值), Σ \varSigma Σ 表示所有向量 x x x的协方差矩阵(反应数据的离散程度)。

以二维为例:
Σ = ( σ 11 σ 12 σ 21 σ 22 ) = ( σ 1 2 σ 12 σ 21 σ 2 2 ) \varSigma =\left( \begin{matrix} \sigma _{11}& \sigma _{12}\\ \sigma _{21}& \sigma _{22}\\ \end{matrix} \right) =\left( \begin{matrix} \sigma _{1}^{2}& \sigma _{12}\\ \sigma _{21}& \sigma _{2}^{2}\\ \end{matrix} \right) Σ=(σ11σ21σ12σ22)=(σ12σ21σ12

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不想当韭菜啊!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值