准确率(P值)是针对我们预测结果而言的,它表示的是预测为正的样本中有多少是真正的正样本。
召回率(R值)是针对我们原来的样本而言的,它表示的是样本中的正例有多少被预测正确了。
假如我此时想吃香蕉,实验室每天都会安排10个水果,分别是6个香蕉,3个橘子,1个菠萝。我在看不见的情况下从中选出5个水果,选出了2个香蕉,2个橘子,1个菠萝。
分别求出P值,R值,F值。
1、准确率(P值):
准确率是针对预测结果而言的,它表示的是预测为正的样本中有多少是真正的样本。这里的正样本就是我想吃的香蕉。
在预测结果中,有2个香蕉,总个数是选的5个,那么P值计算:P=2/5
2、召回率(R值):
召回率是针对我们原来的样本而来的,它表示的是样本中的正例有多少被预测正确了。
这里的正类是我想吃的香蕉,而在样本中的香蕉树是6个,召回率的召回也可以这么理解,代表了原始样本中的正类召回了多少。那么R值计算:R=2/6
3、F值:
我们在评价的时候,当然是希望检索结果Precision越高越好,同时Recall也越高越好,但事实上两者在某些情况下是有矛盾的。比如在极端情况下,在这个例子中,我们只搜索出了一个结果,且是香蕉,那么Precision就是100%,但是Recall为1/6就很低;而如果我们抽取10个水果,那么比如Recall是100%,但是Precision为6/10,相对来说就会比较低。
因此P和R指标有时候会出现的矛盾的情况,这样就需要综合考虑他们,最常见的方法是F-Measure,通过计算F值来评价一个指标。特殊情况F1=2PR/(P+R)