基本思想:
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。[1]
排序流程:
快速排序算法通过多次比较和交换来实现排序,其排序流程如下: [2]
(1)首先设定一个分界值,通过该分界值将数组分成左右两部分。 [2]
(2)将大于或等于分界值的数据集中到数组右边,小于分界值的数据集中到数组的左边。此时,左边部分中各元素都小于或等于分界值,而右边部分中各元素都大于或等于分界值。 [2]
(3)然后,左边和右边的数据可以独立排序。对于左侧的数组数据,又可以取一个分界值,将该部分数据分成左右两部分,同样在左边放置较小值,右边放置较大值。右侧的数组数据也可以做类似处理。 [2]
(4)重复上述过程,可以看出,这是一个递归定义。通过递归将左侧部分排好序后,再递归排好右侧部分的顺序。当左、右两个部分各数据排序完成后,整个数组的排序也就完成了。
排序演示:
假设一开始序列{xi}是:5,3,7,6,4,1,0,2,9,10,8。
此时,ref=5,i=1,j=11,从后往前找,第一个比5小的数是x8=2,因此序列为:2,3,7,6,4,1,0,5,9,10,8。此时i=1,j=8,从前往后找,第一个比5大的数是x3=7,因此序列为:2,3,5,6,4,1,0,7,9,10,8。此时,i=3,j=8,从第8位往前找,第一个比5小的数是x7=0,因此:2,3,0,6,4,1,5,7,9,10,8。此时,i=3,j=7,从第3位往后找,第一个比5大的数是x4=6,因此:2,3,0,5,4,1,6,7,9,10,8。此时,i=4,j=7,从第7位往前找,第一个比5小的数是x6=1,因此:2,3,0,1,4,5,6,7,9,10,8。此时,i=4,j=6,从第4位往后找,直到第6位才有比5大的数,这时,i=j=6,ref成为一条分界线,它之前的数都比它小,之后的数都比它大,对于前后两部分数,可以采用同样的方法来排序。 [3]
算法实现(C语言):
void sort(int *a, int left, int right)
{
//退出条件:如果左边索引大于或者等于右边的索引
if(left >= right) {
return;
}
int i = left;
int j = right;
int key = a[left];
/*控制在当组内寻找一遍*/
while(i < j) {
while(i < j && key <= a[j]) {
j--; /*向前寻找*/
}
a[i] = a[j];
while(i < j && key >= a[i]) {
i++;
}
a[j] = a[i];
}
a[i] = key; /*当在当组内找完一遍以后就把中间数key回归*/
sort(a, left, i - 1); /*最后用同样的方式对分出来的左边的小组进行同上的做法*/
sort(a, i + 1, right); /*用同样的方式对分出来的右边的小组进行同上的做法*/
/*当然最后可能会出现很多分左右,直到每一组的i = j 为止*/
}
void qsort(void *base, int nelem, int width, int (*fcmp)(const void *,const void *)); [3]
参数:
1、待排序数组首地址; [3]
2、数组中待排序元素数量; [3]
4、指向函数的指针,用于确定排序的顺序。 [3]
参考资料