机器学习
文章平均质量分 56
初入小萌新
这个作者很懒,什么都没留下…
展开
-
机器学习-基本概念
基本概念:测试集,特征集,监督学习,非监督学习,半监督学习,分类,回归一个简单的监督学习例子 天气:晴,阴,雨 温度:暖,冷 湿度:普通,大 风力:强,弱 水温:暖,冷 预报:一样,变化 享受运动:是,否1.这是一个分类问题,最终的结果只有true/false的答案2.x是每一个实例,X是全部的实...原创 2018-09-11 20:17:08 · 189 阅读 · 0 评论 -
机器学习-决策树算法
机器学习中分类和预测算法的评估:1.准确率2.速度3.强壮性4.可规模性5.可解释性 1.什么是决策树/判定树判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。2.机器学习中分类方法中的一个重要算法3.构造决策树的基本算法3.1熵的概念一...原创 2018-09-11 21:05:58 · 291 阅读 · 0 评论 -
python实现决策树代码
数据图片 from sklearn.feature_extraction import DictVectorizerimport csvfrom sklearn import preprocessingfrom numpy import *import numpy as npfrom sklearn import treefrom sklearn.externals.si...原创 2018-09-12 19:01:26 · 3091 阅读 · 0 评论 -
CF推荐算法-近邻
一、推荐系统效果评估指标1)均方根误差(RMSE)f(u,i)代表的是预测值,代表的是实际值N代表的测试集的数量所以RMSE也就是每个测试集的预测值和实际值的差的平方之和/测试集数量N 然后开根号2)平均绝对误差(MAE)和RMSE相似MAE 每个测试集的预测值和实际值的差的绝对值之和 / 测试集数量N 然后开根号3)准确率(Precision)...原创 2018-09-23 23:38:17 · 1210 阅读 · 0 评论 -
梯度下降 随机梯度下降 算法
一、一维梯度下降算法思想:我们要找到一个函数的谷底,可以通过不断求导,不断逼近,找到一个函数求导后为0,我们就引入了一个概念学习率(也可以叫作步长),因为是不断逼近某个x,所以学习率过大会导致超过最优解,而学习率过小,会导致收敛速度过慢。二、多维梯度下降算法思想:和一维梯度下降算法思想类似,只是导数由原来的一维变成现在的多维,算法思想本质没有变化,在计算导数的过程发生了...原创 2018-09-25 17:03:21 · 2444 阅读 · 0 评论 -
K-means算法
算法思想:以空间中K个点为中心,对最靠近他们的点进行归类,通过迭代,逐次更新各聚类中心点的值,直到有最好的聚类效果算法描述:1)开始随机选中k个点作为初始中心2)开始迭代,求其到各中心ci的距离,算出距离di,选出di最小的一个中心点,作为这个点所在类3)利用均值的方法更新该类的中心值,也就是把迭代过后,所有属于某个中心点的值的x和y进行求平均找到新的中心点4)对于所有的c...原创 2018-09-26 15:50:43 · 459 阅读 · 0 评论 -
python-Numpy学习(全)
一、数组的创建与操作1.获取数组的元素import numpy as nparr1 = np.array([3,10,12,5,6,8,9,111])print(arr1.shape)arr2 = np.reshape(arr1,(2,4))print(arr2)print(arr1)#取出10,12print(arr1[1:3])#取出第一行第三个 12print...原创 2018-10-28 23:18:16 · 986 阅读 · 0 评论