uva10054--欧拉回路--串珠子

题意:

给出不同颜色的珠子,珠子的两边有两种颜色,串珠子时相邻的珠子颜色要相同。比如12就可以接在32的后面,注意最后一颗珠子要和第一颗珠子要连在一起,也就是说要形成一个回路。

思路:

无脑dfs,因为题目的给出的珠子一定是连通图(不要问我为什么,这是别人告诉我的),所以只要一判定它的每个节点的度都是偶数,(无向欧拉回路形成的条件就是每个点的度要为 偶数)那就可以开始找一条回路,一找到就输出它,毫不犹豫。

#include<iostream>
#include<cstring>
using namespace std;
int ne[55][55];
int po[55];
int t,n,co=0,judge;
void dfs(int u){
	
	for(int v=1;v<51;v++)
		if(ne[u][v]){
			judge=1;
			ne[u][v]--;
			ne[v][u]--;
			dfs(v);
			cout<<v<<' '<<u<<endl;
		}
} 
int main()
{
	scanf("%d",&t);//cin>>t;
	while(t--){
		scanf("%d",&n);//cin>>n;
		memset(po,0,sizeof(po));
		memset(ne,0,sizeof(ne));
		int u,v,flag=1;
		judge=0;
		for(int i=0;i<n;i++){
			
			scanf("%d%d",&u,&v);//cin>>u>>v;
			po[u]++;
			po[v]++;
			ne[u][v]++;
			ne[v][u]++;
		}
		printf("Case #%d\n",++co);
		for(int i=1;i<=50;i++)
			if(po[i]%2){
			flag=0;break;
			} 
		if(flag) 
		for(int i=1;i<=50;i++){
		 if(judge) break;
			dfs(i);
		}
		else cout<<"some beads may be lost"<<endl;
		if(t) cout<<endl;
	}
	return 0;
}



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
欧拉函数(Euler's Totient Function),也称为积性函数,是指小于等于正整数n的数中与n互质的数的个数。我们通常用φ(n)表示欧拉函数。 具体来说,如果n是一个正整数,那么φ(n)表示小于等于n的正整数中与n互质的数的个数。例如,φ(1)=1,因为1是唯一的小于等于1的正整数且1与1互质;φ(2)=1,因为小于等于2的正整数中只有1与2互质;φ(3)=2,因为小于等于3的正整数中与3互质的数是1和2。 欧拉函数的计算方法有很多,下面介绍两种常见的方法: 1. 分解质因数法 将n分解质因数,假设n的质因数分别为p1, p2, …, pk,则φ(n) = n × (1 - 1/p1) × (1 - 1/p2) × … × (1 - 1/pk)。例如,对于n=30,我们将其分解质因数得到30=2×3×5,则φ(30) = 30 × (1-1/2) × (1-1/3) × (1-1/5) = 8。 2. 筛法 我们可以使用筛法(Sieve)来计算欧拉函数。具体地,我们可以先将φ(1)至φ(n)全部初始化为其下标值,然后从2开始遍历到n,将所有能被当前遍历到的数整除的数的欧拉函数值减1即可。例如,对于n=6,我们先初始化φ(1)=1, φ(2)=2, φ(3)=3, φ(4)=4, φ(5)=5, φ(6)=6,然后从2开始遍历,将2的倍数的欧拉函数值减1,即φ(4)=φ(6)=2;然后遍历3,将3的倍数的欧拉函数值减1,即φ(6)=2。最终得到φ(1)=1, φ(2)=1, φ(3)=2, φ(4)=2, φ(5)=4, φ(6)=2。 欧拉函数在数论中有很重要的应用,例如RSA算法的安全性就基于欧拉函数的难解性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Blaze Jack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值