机器学习
文章平均质量分 70
以理论基础与实战为线索,记录学习过程
_Lilly
有谁在快乐地坚持信仰
还有谁在快乐地继续coding
展开
-
快速理解机器学习、深度学习与自然语言处理
机器学习深度学习与自然语言处理的关系原创 2023-01-16 09:17:49 · 1120 阅读 · 0 评论 -
《机器学习》读书笔记——第三章 线性模型
本章内容是在阅读《机器学习》的过程中记录的学习笔记,这本书是机器学习领域的经典书籍,作者是周志华老师。目录1 基本形式2 线性回归3 对数几率回归4 线性判别分析5 多分类学习6 类别不平衡问题1 基本形式f(x)=wTx+bf(\boldsymbol{x}) = \boldsymbol{w}^\mathrm{T}\boldsymbol{x}+bf(x)=wTx+b等价于f(x)=w1x1+w2x2+...+wdxd+bf(\boldsymbol{x})=w_1x_1+w_2x_2+...+w_d原创 2020-11-17 17:09:54 · 267 阅读 · 0 评论 -
《机器学习》读书笔记——第二章 模型评估与选择
本章内容是在阅读《机器学习》的过程中记录的学习笔记,这本书是机器学习领域的经典书籍,作者是周志华老师。目录经验误差与过拟合评估方法性能度量比较检验偏差与方差经验误差与过拟合中文名英文名解释错误率error rate我们把分类错误的样本数占总样本数称为错误率精度accuracy精确度=1-错误率误差error学习器的实际预测输出与样本的真实输出之间的差异训练误差/经验误差trainingerror/empirical error学习器原创 2020-11-16 19:09:13 · 568 阅读 · 0 评论 -
《机器学习》读书笔记——第一章 绪论
本章内容是在阅读《机器学习》的过程中记录的学习笔记,这本书是机器学习领域的经典书籍,作者是周志华老师。目录引言基本术语假设空间归纳偏好引言机器学习致力于研究如果通过计算的手段,利用经验来改善系统自身的性能。机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”(model)的算法。本书中用“模型”泛指从数据中学得的结果。[Mitchell,1997]给出了一个更形式化的定义:假设用P来评估计算机程序在某任务类T上的性能,如果一个程序通过利用经验E在T中任务上获得了性能改善,则我们原创 2020-11-15 19:58:50 · 249 阅读 · 0 评论