LeetCode 703. Kth Largest Element in a Stream

Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.

Implement KthLargest class:

  • KthLargest(int k, int[] nums) Initializes the object with the integer k and the stream of integers nums.
  • int add(int val) Appends the integer val to the stream and returns the element representing the kth largest element in the stream.

Example 1:

Input
["KthLargest", "add", "add", "add", "add", "add"]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
Output
[null, 4, 5, 5, 8, 8]

Explanation
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3);   // return 4
kthLargest.add(5);   // return 5
kthLargest.add(10);  // return 5
kthLargest.add(9);   // return 8
kthLargest.add(4);   // return 8

Constraints:

  • 1 <= k <= 104
  • 0 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • -104 <= val <= 104
  • At most 104 calls will be made to add.
  • It is guaranteed that there will be at least k elements in the array when you search for the kth element.

经典的data stream里找kth largest的问题,典型的heap解法。找k个最大的,那就用size为k的min heap来存k个最大的,于是heap top就是第k个最大的了。(只要记住找的大小和堆的大小相反就行)

就是脑子不太清醒,这里要写的是一个数据结构,在constructor里就给好了k和初始化用的数组,于是需要在constructor里写东西啊喂!别的没啥要注意的了。其实可以写的更简洁一点,就是在add里面无脑先pq.add(val),然后再判断如果size > k就无脑poll。

class KthLargest {
    PriorityQueue<Integer> pq;
    int k;

    public KthLargest(int k, int[] nums) {
        this.pq = new PriorityQueue<>();
        this.k = k;

        for (int i : nums) {
            add(i);
        }
    }
    
    // use min heap to store the largest k elements
    public int add(int val) {
        if (pq.size() >= k) {
            if (val > pq.peek()) {
                pq.poll();
                pq.add(val);
            }
        } else {
            pq.add(val);
        }
        return pq.peek();
    }
}

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest obj = new KthLargest(k, nums);
 * int param_1 = obj.add(val);
 */

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值