【算法作业14】LeetCode 413. Arithmetic Slices

413. Arithmetic Slices

A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

For example, these are arithmetic sequence:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

The following sequence is not arithmetic.

1, 1, 2, 5, 7

A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

A slice (P, Q) of array A is called arithmetic if the sequence:
A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

The function should return the number of arithmetic slices in the array A.


Example:

A = [1, 2, 3, 4]

return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

题解:

这道题的题意是,给定一个数组,求这个数组中所有等差数列的序列的个数,等差数列的要求是至少有三个数。

刚开始我拿了1,2,3,4做例子来思考算法,当时的思路是对于一个等差数列,如果后面再以等差数列加上一个数字后,最后加上的数字就相当于是为整个数组的等差子序列的个数增加了这个数所对应下标减去1以后的数目,所以我只需要用一个数组num[i]去存放以i结尾的子串的大小,再用一个整形变量count存放所有num[1]到num[i]。然后仔细想了一下还会出现形如1,2,3,5,6,7这种可能中间会断成两个等差数列的这种情况就发现行不通了,后来想了很久没想到算法就参考了别人的代码,发现其实只需要修改num[i]的计算方法,从原先的i-1改成利用num[i-1] + 1即可。



代码:

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& A) {
        int size = A.size();
        if (size < 3)
            return 0;
        vector<int> num(size, 0);
        if (A[2] - A[1] == A[1] - A[0])
        {
            num[2] = 1;
        }
        int count = num[2];
        for (int i = 3; i < size; i++)
        {
            if ((A[i] - A[i - 1]) == (A[i - 1] - A[i - 2]))
            {
                num[i] = num[i - 1] + 1;
            }
            count += num[i];
        }
        return count;
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值