投资问题
标签(空格分隔): 算法知识文档 动态规划
投资问题
问题:
m m 元钱,投资 个项目.效益函数 fi(x) f i ( x ) ,表示第 i i 个项目投资 元的效益, i=1,2,3,...,n. i = 1 , 2 , 3 , . . . , n . 求如何分配每个项目的钱使得总效益最大?
实例:
5万元,投资给4个项目,效益函数:
x x | f2(x) f 2 ( x ) | f3(x) f 3 ( x ) | f4(x) f 4 ( x ) | |
---|---|---|---|---|
0 | 0 | 0 | 0 | 0 |
1 | 11 | 0 | 2 | 20 |
2 | 12 | 5 | 10 | 21 |
3 | 13 | 10 | 30 | 22 |
4 | 14 | 15 | 32 | 23 |
5 | 15 | 20 | 40 | 24 |
问题建模:
输入:
n,m,fi(x),i=1,2,3,..,n,x=1,2,...,m n , m , f i ( x ) , i = 1 , 2 , 3 , . . , n , x = 1 , 2 , . . . , m
解:
n n 维向量
目标函数:
约束条件:
蛮力算法:
描述:
枚举所有可能的解 <x1,x2,...,xn> < x 1 , x 2 , . . . , x n > <script type="math/tex" id="MathJax-Element-72"> </script>满足 x1+x2+...+xn=m x 1 + x 2 + . . . + x n = m 然后求解当前解的效益总值,得到最大的效益值对应的解向量.
实际计算:
对于当前实例:
x1+x2+x3+x4=5 x 1 + x 2 + x 3 + x 4 = 5
s