投资问题

本文探讨了如何使用动态规划解决投资问题,以最大化效益。通过建立递推方程和边界条件,逐步计算每个项目的最优投资,最终找到总效益最大的投资组合。文中给出了一个实例,详细展示了动态规划算法的计算过程,并指出该算法的时间复杂度为O(nm^2)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

投资问题

标签(空格分隔): 算法知识文档 动态规划


投资问题

问题:

m m 元钱,投资 n 个项目.效益函数 fi(x) f i ( x ) ,表示第 i i 个项目投资 x 元的效益, i=1,2,3,...,n. i = 1 , 2 , 3 , . . . , n . 求如何分配每个项目的钱使得总效益最大?

实例:

5万元,投资给4个项目,效益函数:

x x f 1 ( x ) f2(x) f 2 ( x ) f3(x) f 3 ( x ) f4(x) f 4 ( x )
0 0 0 0 0
1 11 0 2 20
2 12 5 10 21
3 13 10 30 22
4 14 15 32 23
5 15 20 40 24

问题建模:

输入:
n,m,fi(x),i=1,2,3,..,n,x=1,2,...,m n , m , f i ( x ) , i = 1 , 2 , 3 , . . , n , x = 1 , 2 , . . . , m

解:
n n 维向量 < x 1 , x 2 , . . . , x n > , x i i i , 使
目标函数:

maxi=1nfi(xi) m a x ∑ i = 1 n f i ( x i )

约束条件:
i=1nxi=m,xiN ∑ i = 1 n x i = m , x i ∈ N

蛮力算法:

描述:
枚举所有可能的解 <x1,x2,...,xn> < x 1 , x 2 , . . . , x n > <script type="math/tex" id="MathJax-Element-72"> </script>满足 x1+x2+...+xn=m x 1 + x 2 + . . . + x n = m 然后求解当前解的效益总值,得到最大的效益值对应的解向量.

实际计算:
对于当前实例:
x1+x2+x3+x4=5 x 1 + x 2 + x 3 + x 4 = 5
s

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值