目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着准备考研,考公,考教资或者实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
本次分享的课题是:
🎯基于深度学习的书法字体内容识别
课题背景
随着人们对书法的兴趣增加,利用计算机辅助完成书法字符识别成为一种解决方案。传统的基于机器学习的光学字符识别技术需要进行复杂的预处理和特征提取,而在中国书法文字识别领域,选择高质量且不冗余的特征十分困难。此外,早期的技术对背景、噪声、光线和拍摄角度等因素过于敏感,导致在复杂场景下的识别准确度受到影响。深度学习技术能够自动学习特征表示,减少了对手动设计特征的依赖,并具有较强的表征能力和泛化性能。因此,将深度学习引入中国书法文字识别领域,有望提高识别准确度和效率,解决传统方法面临的问题。
实现技术思路
2.1 算法技术实现
在图像识别领域,传统的特征工程模型已经无法满足高精度和大规模识别需求,而深度神经网络模型凭借其自动特征挖掘能力被广泛采用。神经网络模型受到生物神经网络的启发,通过分布式并行处理信息的数学模型实现了出色的信息表达能力。
全连接神经网络在手写数字识别等领域得到广泛应用,但存在参数数量过多、未利用像素位置信息和受梯度消失等限制。卷积神经网络解决了这些问题,并被广泛用于图像识别和分类。卷积神经网络具有局部连接、权值共享和局部线性激活等特点。它通过卷积计算层、激励层、池化层等结构扩展了基础人工神经网络。典型的卷积神经网络包含输入层、卷积层、ReLU激活函数、池化层、全连接层和输出层等组件。
卷积神经网络是一种用于图像识别的深度学习模型。它通过输入层接收数据并进行标准化处理,卷积层利用卷积核提取多种特征生成特征图谱,线性整流函数引入非线性特性,池化层降采样减少参数和计算量,全连接层将特征图连接成向量并与输出层全连接,输出层产生最终的分类或预测结果。
多任务学习是一种机器学习方法,通过同时学习多个相关任务并共享信息来提升主任务的泛化效果。在多任务学习中,多个任务对应的损失函数会同时进行反向传播,共享部分隐藏层的参数,而保留特定任务的输出层。这种硬共享参数的机制可以有效降低过拟合的风险,提高整体模型的性能。因此,多任务学习通过利用任务之间的相关性,共同学习和利用共享的特征信息,以提高模型的泛化能力。
在参数软共享机制中,每个任务都有独立的模型和相应的参数。然而,为了促使不同任务的模型参数相似,可以通过对不同模型参数之间的距离进行正则化来实现。
参数软共享方法通过引入额外的正则化项来约束不同任务的模型参数。这个正则化项通常是基于参数之间的距离或相似性度量。一种常用的方法是使用L2正则化(权重衰减),它将不同任务的模型参数推向相似的方向。
通过参数软共享,不同任务之间可以共享一些相似的特征,从而提高模型的泛化能力。这种方法可以在训练过程中通过共享信息来提升各个任务的性能,并且可以适应任务间的关联性变化。
书法字体与文字内容同步识别策略可以使用不同的方法,包括二元关联(Binary Relevance, BR)、分类器链(Classifier Chains, CC)和标签幂集(Label Powerset, LP)等。
BR方法通过构建两个分类器,一个用于书法字体识别,另一个用于书法文字内容识别。最后将两个分类器的识别结果进行拼接,得到最终的同步识别结果。
CC方法训练一个书法字体识别器和针对不同字体的文字内容识别器。在识别时,先将书法字图像输入书法字体识别器中,输出字体识别结果,然后根据字体识别结果将其送给对应的书法文字内容识别器中,输出文字内容识别结果。
LP方法直接将书法字体标签和文字内容标签进行组合,然后按照组合后的标签训练一个多分类器。例如,如果有5种字体类型和500个书法字符,需要构建一个具有5 * 500 = 2500种输出类别的分类器。LP方法只需要一个神经网络就可以直接对书法字体与文字内容同时识别。
2.2 数据处理
由于网络上没有现有的合适的数据集,我决定采取一种自制数据集的方法来支持书法识别系统的研究。我通过进行网络爬取和现场拍摄,收集了大量的书法字体图片,包括不同风格、不同书家的作品。这个数据集涵盖了丰富多样的书法字体,并且能够捕捉到真实的书法作品和多样的书写环境。通过网络爬取,我获取了来自各个网站和在线资源的书法字体图片,涵盖了多种书体、不同字形和书写风格。这样的数据收集方法能够提供大规模的书法字体样本,丰富了数据集的多样性和覆盖范围。
数据增广和数据扩充是用于改善模型性能和泛化能力的重要技术。数据增广通过对原始数据进行随机变换生成新样本,增加数据的多样性和适应性。数据扩充则通过收集更多的原始数据来增加数据集规模,提供更丰富的训练样本。这两种方法可以结合使用,以提高模型的泛化能力和减少过拟合风险。在使用这些技术时,需要确保生成的样本保持与原始数据的相关性,并避免引入过多噪声或不相关变化。通过数据增广和数据扩充,可以为模型的训练提供更准确、可靠的数据基础,为各种任务的机器学习研究和应用做出积极贡献。
2.3 模型训练
使用Adam优化算法和交叉熵损失函数进行训练的方法,针对书法字体类型与文字内容同步识别网络的训练过程。
model = sync_recognition_network()
# 定义Adam优化器和交叉熵损失函数
optimizer = tf.keras.optimizers.Adam(learning_rate=0.001, beta_1=1.0, beta_2=0.999)
loss_fn = tf.keras.losses.CategoricalCrossentropy()
首先,在书法字体类型识别训练阶段,使用整个训练集进行标记和one-hot编码,并对网络的共享层和第一个任务分支(书法字体类型识别)进行训练,得到一个用于字体识别的5分类器(FRNet分支)。
接下来,在网络参数迁移共享阶段,固定共享层的参数,并直接将其用于书法文字内容识别的浅层特征提取。
通过将模型与标记好的训练数据进行迭代优化,以使模型能够学习到数据中的模式和特征,并提高其预测能力和泛化能力。模型训练流程通常包括以下步骤:
-
数据准备:准备标记好的训练数据集,将数据划分为训练集、验证集和测试集,确保数据的质量和多样性。
import numpy as np
from sklearn.model_selection import train_test_split
data = np.load('training_data.npy')
labels = np.load('training_labels.npy')
train_data, test_data, train_labels, test_labels = train_test_split(data, labels, test_size=0.2, random_state=42)
train_data, val_data, train_labels, val_labels = train_test_split(train_data, train_labels, test_size=0.2, random_state=42)
-
模型构建:选择适当的模型架构,并根据任务的需求定义模型的输入、输出以及各个层的结构和参数。
-
目标函数定义:选择适当的损失函数作为目标函数,用于衡量模型预测结果与实际标签之间的差异。
-
优化算法选择:选择适当的优化算法,如Adam、SGD等,用于更新模型参数以最小化目标函数。
for params in param_grid:
model = sync_recognition_network(params['learning_rate'], params['regularization_rate'])
# 定义Adam优化器和交叉熵损失函数
optimizer = tf.keras.optimizers.Adam(learning_rate=params['learning_rate'])
loss_fn = tf.keras.losses.CategoricalCrossentropy()
-
迭代训练:将训练集输入模型中进行前向传播,计算损失函数,并通过反向传播来计算梯度。然后使用优化算法根据梯度更新模型参数。这个过程通常通过多个迭代(也称为epoch)来完成。
# 迭代训练过程
for epoch in range(num_epochs):
# 分批次读取训练数据
for batch_data, batch_labels in train_dataset:
# 前向传播
with tf.GradientTape() as tape:
logits = model(batch_data, training=True)
loss_value = loss_fn(batch_labels, logits)
# 计算梯度并更新模型参数
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
-
模型评估:使用验证集评估模型在未见过的数据上的性能,例如计算准确率、精确率、召回率等指标。
for val_data, val_labels in val_dataset:
val_logits = model(val_data, training=False)
val_loss = loss_fn(val_labels, val_logits)
-
超参数调优:根据验证集的性能,调整模型的超参数,例如学习率、正则化参数等,以提高模型的性能。
def sync_recognition_network(learning_rate, regularization_rate):
# 定义模型结构和参数
...
return model
learning_rates = [0.001, 0.01, 0.1]
regularization_rates = [0.001, 0.01, 0.1]
param_grid = ParameterGrid({'learning_rate': learning_rates, 'regularization_rate': regularization_rates})
-
最终模型选择:根据测试集的性能评估,选择表现最佳的模型作为最终模型。
🚀海浪学长的作品示例:
大数据算法项目
机器视觉算法项目
微信小程序项目
Unity3D游戏项目
最后💯
🏆为帮助大家节省时间,如果对开题选题,或者相关的技术有不理解,不知道毕设如何下手,都可以随时来问学长,我将根据你的具体情况,提供帮助。