目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于深度学习的人脸性别年龄识别系统
课题背景和意义
人脸性别年龄识别系统在实际应用中具有广泛的需求和潜在的商业价值。这种系统可以通过分析人脸图像,准确地判断一个人的性别和年龄段,对于广告定向投放、安防监控、人机交互等领域具有重要意义。然而,传统的人脸性别年龄识别方法在准确性和鲁棒性方面存在一定的局限性。基于深度学习的人脸性别年龄识别系统的研发,能够通过大规模的人脸数据集和深度神经网络模型,提高识别的准确性和鲁棒性,为相关领域的应用提供更可靠的技术支持。
实现技术思路
一、 检测算法
1.1 人脸检测
AdaBoost是一种集成学习方法,旨在通过组合多个弱分类器来构建一个强分类器,是集成学习领域中最著名和经典的算法之一。在AdaBoost算法中,每个弱分类器被赋予一个权重,用于指示其在最终分类器中的重要性。算法通过迭代的方式,逐步训练一系列弱分类器,并根据它们的表现调整样本的权重。在每一轮迭代中,AdaBoost会根据前一轮分类器的表现,增加被错误分类的样本的权重,使其在下一轮迭代中更受关注,从而使得后续的弱分类器能够更好地处理这些难以分类的样本。最终,所有弱分类器的预测结果会根据其权重进行加权求和,得到最终的分类结果。
AdaBoost算法在人脸检测中的应用步骤如下:
-
特征提取:使用Haar-like特征或其他合适的特征提取方法从图像中提取特征。Haar-like特征是一种基于图像区域的局部差异计算的特征,可以有效地描述人脸的特征。
-
弱分类器训练:使用AdaBoost算法训练一系列弱分类器。每个弱分类器基于提取的特征和标记的正负样本进行训练。在训练过程中,AdaBoost会根据分类误差调整样本的权重,使得错误分类的样本在下一轮训练中得到更多的关注。
-
强分类器构建:将训练得到的弱分类器组合成一个强分类器。在组合过程中,每个弱分类器的权重会根据其分类性能进行调整,以提高整体分类性能。
-
滑动窗口检测:使用训练好的强分类器在待检测图像上进行滑动窗口的检测。滑动窗口将图像划分为一系列重叠的区域,并在每个窗口上应用强分类器进行判断。如果窗口被强分类器判定为人脸,则将其标记为检测到的人脸。
-
非极大值抑制:由于滑动窗口可能会在相邻位置检测到同一个人脸,需要进行非极大值抑制来消除重复检测。非极大值抑制会保留具有最高置信度的人脸框,并剔除与其高度重叠的其他检测框。
1.2 特征提取方法
随着小波变换技术的成熟和完善,常用的Gabor函数常以2D形式呈现。研究表明,哺乳动物视觉皮层中大部分简单细胞的滤波响应可以用一组自相似的2D Gabor小波来模拟。因此,2D Gabor变换在图像处理中具有重要的应用。
相比直接采用灰度值特征,2D Gabor变换对图像中的局部纹理变化更敏感,能够更好地表达图像的局部结构信息。因此,2D Gabor变换适用于表示人脸图像,并且能够克服光照、表情和几何变换等因素对人脸识别的影响。使用2D Gabor变换进行人脸识别可以提高识别率。
LBP是一种用于图像处理和模式识别的纹理特征描述子。
LBP特征用于描述图像中局部纹理的变化。它通过比较像素点与其周围邻域像素的灰度值大小关系,将局部纹理信息编码为二进制模式。LBP特征具有以下几个关键步骤:
-
确定邻域:选择一个中心像素点,并定义其周围的邻域像素点。通常使用8邻域或16邻域,即选择中心像素点周围的8个或16个像素点。
-
进行比较:将中心像素点与其邻域像素点进行灰度值比较。将邻域像素点的灰度值与中心像素点的灰度值进行比较,如果邻域像素点的灰度值大于等于中心像素点的灰度值,则将其标记为1,否则标记为0。
-
生成模式:将比较结果按顺时针或逆时针顺序连接起来,形成一个二进制模式。例如,对于8邻域,可以得到一个8位的二进制模式。
-
直方图统计:对图像中的每个像素点都生成对应的LBP模式,然后统计图像中不同LBP模式的出现次数,形成一个直方图。
PCA的目的是通过线性变换将原始高维数据投影到一个新的低维空间,同时保留尽可能多的数据变差信息。它通过计算数据的协方差矩阵的特征向量,找到原始数据中最重要的主成分(特征向量),并按照其对应的特征值进行排序。然后,选择前k个特征向量作为新的基向量,构成一个k维子空间。这样,原始数据就可以在这个低维子空间中表示和重构。PCA广泛应用于数据预处理、降噪、特征提取等领域。
LDA的目的是通过线性变换将原始高维数据投影到一个新的低维空间,同时最大化不同类别之间的可分性。LDA是一种有监督的降维方法,它在考虑类别标签的前提下,通过最大化类别间的散度和最小化类别内的散度,找到一个投影方向,使得同一类别的样本尽可能靠近,不同类别的样本尽可能分开。这样,LDA能够提取出最具判别性的特征,有助于分类任务的性能提升。LDA常用于模式识别、人脸识别、目标检测等领域。
二、 数据集
2.1 数据集
由于网络上缺乏现有的合适数据集,我亲自收集了大量的人脸图像,并对其中的性别和年龄段进行标注。通过在现实场景中拍摄,我能够捕捉到真实的人脸图像和多样的光照、表情、角度等变化,这将为我的研究提供更准确、可靠的数据基础。我相信这个自制的数据集将为基于深度学习的人脸性别年龄识别系统的研究提供有力的支持,并为该领域的发展做出积极贡献。通过构建这个数据集,我能够训练和优化深度神经网络模型,提高识别的准确性和鲁棒性,使人脸性别年龄识别系统在实际应用中更加可靠和稳定。
三、实验及结果分析
3.1 实验环境搭建
本实验使用普通家用PC机进行,硬件配置为Intel(R) Core(TM)2 Duo CPU P7450双核2.13GHz和2GB内存。实验的软件环境为Matlab R2011b版本。
3.2 模型训练
将数据集划分为训练集、验证集和测试集:首先,将收集到的数据集按照一定比例划分为训练集、验证集和测试集。训练集用于模型的训练和参数更新,验证集用于评估模型的性能并进行调优,测试集用于最终评估模型在未见过的数据上的性能。
import numpy as np
from sklearn.model_selection import train_test_split
# 假设你有一个包含人脸图像和标签的数据集,存储在X和y变量中
# 首先将数据集划分为训练集和剩余集
X_train, X_remain, y_train, y_remain = train_test_split(X, y, test_size=0.3, random_state=42)
# 再将剩余集划分为验证集和测试集
X_val, X_test, y_val, y_test = train_test_split(X_remain, y_remain, test_size=0.5, random_state=42)
# 现在,你有了划分好的训练集、验证集和测试集,可以用于模型训练、评估和测试
使用训练集对深度学习模型进行训练。通过反向传播算法和优化器(如SGD、Adam等)来更新模型的权重和参数,使其逐步学习人脸图像的性别和年龄特征。训练过程中,通常会定义损失函数来衡量模型预测结果与真实标签之间的差异,并利用优化算法最小化损失函数,从而提高模型的预测准确性。
def train(model, train_loader, criterion, optimizer, num_epochs):
model.train() # 设置模型为训练模式
for epoch in range(num_epochs):
running_loss = 0.0
for images, labels in train_loader:
# 将输入数据和标签送入模型进行前向传播
outputs = model(images)
# 计算损失
loss = criterion(outputs, labels)
# 清零梯度
optimizer.zero_grad()
# 反向传播和优化
loss.backward()
optimizer.step()
running_loss += loss.item()
epoch_loss = running_loss / len(train_loader)
print(f"Epoch {epoch+1}/{num_epochs} loss: {epoch_loss}")
使用验证集对训练的模型进行评估,计算性能指标如准确率、精确率、召回率等。根据评估结果,可以进行模型的调优,如调整网络结构、增加/减少网络层数、调整学习率、正则化等。通过不断优化模型的参数和结构,提高模型在验证集上的性能。
def evaluate(model, val_loader):
model.eval() # 设置模型为评估模式
with torch.no_grad():
correct = 0
total = 0
for images, labels in val_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = correct / total
print(f"Validation Accuracy: {accuracy}")
根据实际应用需求和用户反馈,对模型进行改进和迭代。可能需要收集更多的数据、调整模型参数、改进数据增强方法等,以进一步提高性别年龄识别系统的准确性和稳定性。
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!