目录
前言
📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。
🚀对毕设有任何疑问都可以问学长哦!
选题指导:
大家好,这里是海浪学长毕设专题,本次分享的课题是
🎯基于机器学习的绵羊识别算法系统
课题背景和意义
在畜牧业中,绵羊的识别与管理是一项重要的任务。随着养殖规模的扩大和智能化技术的发展,传统的绵羊识别方法已无法满足现代畜牧业的需求。绵羊识别算法系统具有重要的现实意义。该系统可以实现对绵羊的准确识别与计数,提高畜牧业的生产效率和管理水平,同时为智能养殖和精细化畜牧业提供技术支持。此外,该课题的研究还可以推动计算机视觉和机器学习技术的发展,为其他领域的应用提供借鉴和参考。
实现技术思路
一、算法理论基础
1.1 LeNet网络
深度学习和计算机视觉(CV)技术的出现和迅速发展为解决图像分类问题提供了有力的技术支撑。在规模化和集约化管理羊只的养殖场中,由于羊只数量庞大,提高数字化和精准化管理水平,实现羊只个体身份识别成为迫切需要解决的问题,而绵羊识别技术就成为关键的技术之一。针对羊只面部识别这一细粒度识别任务,深度学习和CV技术提供了可能性。目前,深度学习和CV技术主要依靠卷积神经网络(CNN)来实现,CNN在图像分类任务中得到了广泛应用并表现出优异的性能。
CNN的整体架构由输入层(Input Layer)、隐藏层(Hidden Layer)和输出层(Output Layer)组建而成,而隐藏层一般由卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)构成。其中,卷积层用于提取图像特征,池化层用于降低特征的空间维度,全连接层用于将提取的特征映射到输出类别。CNN中结构较为简单的一种网络就是LeNet-5。LeNet-5网络的架构包括输入层、卷积层、池化层和全连接层,它在当时被广泛用于手写数字识别任务。
AlexNet的出现标志着深度学习的迅速发展。该网络采用了ReLU激活函数和Dropout操作。ReLU激活函数具有较强的非线性表达能力,并且能够避免梯度消失的问题。Dropout操作可以随机地使部分神经元失活,抑制过拟合现象。
VG16网络的整体结构包括输入层、卷积层、池化层、全连接层和输出层。具体来说,它由13个卷积层和3个全连接层组成,以及一些用于非线性激活的ReLU层和用于减少过拟合的Dropout层。
在VG16中,卷积层采用3x3的卷积核,步幅为1,并使用填充(padding)操作来保持特征图的大小。池化层则采用2x2的池化窗口进行下采样,步幅为2。这种结构重复堆叠的方式使得网络具有更深的层级,有助于提取更复杂的特征。
1.2 YOLO v5
YOLO v5是一种基于深度学习的目标检测算法,适用于各种实时视觉任务,包括绵羊识别系统。YOLO v5在绵羊识别系统中可以用于检测和定位绵羊的位置,从而实现对绵羊进行自动化监测、计数或跟踪。通过在图像或视频中实时检测绵羊,可以帮助农民或畜牧业者更有效地管理和监控羊群。YOLO v5的核心原理是将目标检测任务转化为一个回归问题。它将输入图像划分为多个网格,每个网格负责检测其中的目标。每个网格预测目标的边界框(bounding box)以及对应的类别置信度。YOLO v5使用单个神经网络模型,通过同时在多个尺度上进行检测,实现对不同大小的目标的检测和定位。
YOLO v5的网络结构包括特征提取层和检测层。特征提取层使用深度卷积神经网络提取图像的特征表示,而检测层通过回归来预测目标的边界框和类别置信度。训练过程使用标注的边界框和类别信息来优化网络参数,使其能够更准确地检测和定位绵羊。
1.3 ResNet 网络结构
ResNet是一种深度残差网络结构,旨在解决深层网络训练中的梯度消失和网络退化问题。ResNet通过引入残差连接来构建网络,使得网络可以学习残差映射,从而更有效地进行模型训练。ResNet的基本思想是将输入特征和输出特征进行相加,而不是仅仅通过网络层的堆叠来逐层学习特征表示。这样的残差连接可以直接传递梯度,使得信息能够更快地从网络的前部传递到后部,解决了梯度消失的问题。此外,引入残差连接还能够缓解网络退化问题,即随着网络层数增加,网络性能不再提升甚至下降的现象。
ResNet v2是ResNet的改进版本,主要针对残差块的设计进行了优化。在ResNet v2中,引入了批量归一化(batch normalization)和预激活(pre-activation)的概念,使得网络更加易于训练和优化。预激活结构将批量归一化和激活函数放在残差块的前部,使得特征映射在进入卷积层之前就已经被正则化和激活,有助于减轻梯度消失问题。相比于传统的ResNet,ResNet v2在残差块的设计上更加简洁,减少了网络的参数量,同时在一些视觉任务上取得了更好的性能。ResNet v2的结构更加高效,对于较深的网络可以更好地保持性能,并且具有更快的收敛速度。
二、 数据集
2.1 数据集
为了实现绵羊识别算法系统,首先需要构建一个包含绵羊图像的数据集。然而,现有的公开数据集中关于绵羊的图像数量有限且质量参差不齐,因此我决定自制一个数据集。我选择了多个绵羊养殖场作为拍摄地点,使用专业相机和无人机拍摄了大量绵羊在不同场景下的图像。这些图像涵盖了绵羊的正面、侧面、背面等多个角度,以及不同光照条件和环境背景下的绵羊图像。为了增加数据集的多样性,我还对图像进行了预处理和增强操作,如旋转、缩放、裁剪等。最终,我成功构建了一个包含数百张高质量绵羊图像的数据集,为后续的模型训练提供了有力的支持。
2.2 数据扩充
数据扩充是一种用于增加训练数据多样性和数量的技术,旨在提高模型的泛化能力。在绵羊识别算法系统中,我采用了多种数据扩充方法来增强数据集的质量。这包括旋转图像以模拟不同角度的拍摄,缩放图像以模拟不同距离的拍摄,以及裁剪图像以模拟不同的视野范围。此外,我还使用了色彩抖动和噪声添加等技术来改变图像的亮度和对比度,以及模拟实际拍摄中可能出现的干扰因素。
三、实验及结果分析
对绵羊面部训练集和验证集进行了六组实验,分别使用了AlexNet预训练网络模型、VGG16预训练网络模型、ResNet-50预训练网络模型、ShuffleNetNetv2预训练网络模型、ResNetv2-50预训练网络模型和PyConvJResformer预训练网络模型进行了60个epoch的训练。在训练过程中,使用了训练集准确率、训练集损失、训练集错误率、验证集准确率、验证集损失和验证集错误率这六个指标来绘制不同神经网络的进度曲线。不同的预训练网络模型在绵羊面部数据集上表现出不同的性能。通过绘制准确率进度曲线图可以对比不同网络模型的性能。
多头自注意力(Multi-head Self-Attention)和金字塔卷积(Pyramid Convolution)是两种常用的网络模块,它们可以同时提升ResNetv2-50网络在准确率、精确率、召回率、F1值和Kappa系数等指标上的性能,并且还可以减小ResNetv2-50网络模型的尺寸。
相关代码示例:
# 设置图像参数
img_width, img_height = 128, 128
input_shape = (img_width, img_height, 3)
# 设置超参数
epochs = 10
batch_size = 32
# 数据增强
train_datagen = ImageDataGenerator(rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
# 加载训练集和测试集
train_generator = train_datagen.flow_from_directory(train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(test_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
# 构建模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
海浪学长项目示例:
最后
我是海浪学长,创作不易,欢迎点赞、关注、收藏。
毕设帮助,疑难解答,欢迎打扰!