毕业设计:基于深度学习的情感识别与音乐可视化结合研究

目录

前言

课题背景和意义

实现技术思路

一、算法理论基础

1.1 情感识别

1.2 生成对抗网络

二、 数据集

三、实验及结果分析

3.1 实验环境搭建

3.2 模型训练

最后


前言

    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

    选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

       🎯基于深度学习的情感识别与音乐可视化结合研究

课题背景和意义

       音乐可视化技术通过将音频信号转化为视觉表现,增强了观众的听觉体验。随着情感计算和深度学习的发展,基于情感识别的音乐可视化可以实时捕捉用户的情感状态,并通过相应的视觉效果进行响应。这种交互式体验不仅提升了音乐欣赏的参与感,还为艺术创作、心理治疗和教育等领域提供了新的应用方向。研究情感识别在音乐可视化中的应用,能够推动多媒体艺术的发展,满足个性化和沉浸式体验的需求。

实现技术思路

一、算法理论基础

1.1 情感识别

       网络上读取的音乐数据质量良莠不齐,避免传输过程中信号减弱,采取预加重手段提高高频部分。音乐的能量主要分布在低频段,声音功率谱密度随频率增高而下降,影响信号质量。预加重的实现方式是一个一阶数字滤波器,完成预处理后的声波信息不具备情感特征,因此在将音乐样本送入分类器之前,最后一步是对音乐样本开展情感特征提取。音乐中最具代表性的特征是声学特征,感情往往蕴含在声学特征中,音乐文本也起到辅助表达情感的作用。声学特征包括时域特征、频域特征,并结合音符信息进行特征融合。

       一段音乐可分为许多帧,每帧语音经过快速傅里叶变换计算后对应一个频谱,反映频率与能量的关系。声谱图要反映所有频率和能量的关系,通常需要将其输入到梅尔标度滤波器组中,变换为梅尔频谱。音乐并不是简单的帧与帧之间信息的拼接,因此需要加入一些特征,以表示倒谱系数随着时间的变化而变化,使静态波形图动起来。MFCC作为声学特征广泛应用于语音识别系统,语音和音乐在本质上都属于声音信息,因此在音乐情感识别中也将运用。相对于频谱特征,MFCC的相关性更小,更容易建立模型。但MFCC抵抗噪声的鲁棒性不强,而PLP相较于MFCC具有更好的噪声鲁棒性,因此将两种声学特征结合作为特征输入。

       将两种声学特征结合作为输入是创新点之一,能够保证在提取MFCC特征实现情感特征有效提取的同时,利用PLP特征增加噪声鲁棒性,并将在实验中证明其有效性。音乐作为艺术形式和文化活动,其媒介是有规律且准确的音高声音组成,这也是乐音与噪音的主要差别。音乐的基本组成元素包含音的高低、长短及强弱。音的强弱通过模拟信号体现,音的高低和长短则可用数字信号体现。音乐音频信息以波形或音符形式存在,不能直接通过计算机计算,必须将非结构化信息转化为结构化信息,进而完成情感识别。

       音乐作为一种音频信息,以波形或音符的形式存在,无法直接通过计算机进行处理。为了实现情感识别,需要将这种非结构化的信息转化为结构化的信息。这一过程涉及对音频信号进行特征提取和表示,使得计算机能够理解和分析音乐中的情感内容。特征提取通常包括音频的频谱分析、时域特征提取和声学特征的计算等步骤。这些特征可以为后续的情感识别模型提供必要的数据支持。在音乐情感识别中,word2vec模型的引入为音频信号的处理提供了新的思路。word2vec包括两种主要的训练模型:CBOW和Skip-gram。这两种模型通过将音乐数据转化为类似于文本中的词向量,使得音频信号能够以结构化的形式输入到机器学习模型中。

       在Skip-gram模型中,隐藏层的节点h的输入为输入层所有输入的加权和。由于输入向量为独热编码,只有在向量中出现非零元素时,隐藏层才会产生输入。这意味着隐藏层的输出仅依赖于权重矩阵中的k值,从而通过学习得到音频特征和情感之间的关联。通过这种方式,Skip-gram模型能够有效地捕捉音乐中的情感特征,为后续的情感识别任务提供有力支持。结合word2vec模型,音乐情感识别不仅能够提高情感识别的准确性,还可以通过训练得到的向量表示更好地理解音乐中的情感变化。这种方法为音乐情感识别领域的研究开辟了新的方向,促进了音频信号处理与机器学习技术的深度融合。

       WaveNet是一种基于深度学习的生成模型,专门用于音频信号处理,尤其是在语音合成和音乐生成领域。其网络结构主要由多个堆叠的卷积层组成,采用了因果卷积和残差连接的设计,使得模型能够有效捕捉音频信号中的时间依赖性。在WaveNet中,输入信号经过多个卷积层后,逐层提取出不同层次的特征,最后通过软max层生成音频信号的概率分布。由于其采用了扩张卷积,WaveNet能够在保持计算效率的同时,扩大感受野,从而捕捉更长时间的上下文信息。

1.2 生成对抗网络

        生成对抗网络(GAN)是一种深度学习模型,主要由两个相互对抗的部分组成:生成器和判别器。生成器是一个神经网络,负责根据随机噪声生成新的数据样本,其目标是创造出尽可能真实的数据,以便骗过判别器。生成器通过学习真实数据的分布,逐步改善生成样本的质量,使其更加接近真实数据的特征。而判别器则是另一个神经网络,主要任务是判断输入的数据样本是真实的还是生成的。判别器通过对真实样本和生成样本的比较,不断提升其区分能力,以便更准确地识别生成器的输出。GAN在情感识别中的应用主要体现在数据增强和生成具有特定情感标签的样本上,通过生成多样化的音频数据,可以提高情感识别模型的鲁棒性和准确性。

       在训练过程中,生成器和判别器通过对抗的方式进行竞争,这种竞争关系促使两者不断进步。生成器试图生成更加真实的样本,以使判别器产生错误的判断;而判别器则通过不断学习来提高其分类精度。这种动态的博弈过程形成了GAN的核心机制,最终使得生成器能够生成高质量、逼真的数据样本。GAN的这种特性使其在图像生成、艺术创作、数据增强等多个领域得到了广泛应用,成为了现代深度学习研究中的一个重要方向。

        长短期记忆网络(LSTM)是一种特殊类型的递归神经网络(RNN),旨在解决传统RNN在处理长序列数据时面临的梯度消失和爆炸问题。LSTM通过引入细胞状态和三个门控机制(输入门、遗忘门和输出门),有效地控制信息的流动和记忆。输入门决定了当前输入有多少信息被写入细胞状态,遗忘门控制了细胞状态中哪些信息需要保留或丢弃,输出门则决定了细胞状态的哪些部分将传递给下一个神经网络层。这种机制使得LSTM在处理时间序列数据时,能够捕捉到长时间依赖关系,从而在情感识别中,LSTM能够分析音频信号随时间变化的情感特征。

二、 数据集

       音频数据需确保涵盖多种风格与情感的音乐样本,以便全面覆盖目标情感类别。例如,可以选择古典、流行、摇滚、电子等多种音乐类型,以捕捉不同情感的表现方式。同时,除了使用公开的音乐数据库还可以利用音乐流媒体平台(如YouTube)进行更广泛的收集。在这些平台上,可以根据用户生成的播放列表、评论和推荐系统来筛选特定情感的音乐。情感标签的分配同样重要,需为每个音频样本准确地赋予情感标签,可以通过专家评估、问卷调查或使用现有的情感标签数据库来进行标注。

三、实验及结果分析

3.1 实验环境搭建

        深度学习框架为构建、训练、优化和推理深度神经网络提供了必要的基础工具,使开发者能够更高效地进行相关工作。这些框架不仅简化了复杂的计算过程,还提供了丰富的功能和灵活的接口,帮助开发者快速实现各种深度学习算法。在众多深度学习框架中,PyTorch因其高度的扩展性和可移植性而受到广泛欢迎,尤其在学术研究和工业应用中表现出色。它的动态计算图特性使得模型的调试和修改变得更加直观和方便,同时,PyTorch拥有一个活跃的开发者社区,提供了大量的资源和支持,极大地推动了深度学习的研究和应用。

3.2 模型训练

       数据通常包括音频文件及其对应的情感标签。常见的数据集如EMO-DB(德语情感数据库)和CREMA-D(多种情感的英语音频数据库)都可以作为重要的资源。收集到的数据必须经过预处理,以提高后续分析的效果。预处理步骤包括去噪、归一化和分帧。去噪是指通过信号处理技术减少音频中的背景噪声,归一化则是将音频信号的幅度调整到统一范围内,以便于后续的特征提取。分帧是将连续的音频信号切分为短小的片段,使得每个片段在特征提取时能够捕捉到瞬时的声学特征。在进行模型训练之前,必须将数据集分为训练集和测试集。

import librosa

# 加载音频文件
audio_file = 'path/to/audio.wav'
y, sr = librosa.load(audio_file, sr=None)

# 去噪(使用简单的均值滤波)
y_denoised = librosa.effects.preemphasis(y)

# 分帧
frames = librosa.util.frame(y_denoised, frame_length=2048, hop_length=512)

       特征提取是情感识别过程中的核心步骤。通过提取音频信号的特征,我们能够将原始音频信号转化为模型可以理解的数值形式。常用的特征包括梅尔频率倒谱系数(MFCC)、音调、节奏、音量等。其中,MFCC是音频处理领域中的标准特征,能够有效捕捉语音和音乐的音色信息。在提取特征后,我们通常会对这些特征进行聚合处理,比如计算每个特征的均值和标准差,以减少数据的维度并增强模型的鲁棒性。

import numpy as np

# 提取MFCC特征
mfccs = librosa.feature.mfcc(y=y_denoised, sr=sr, n_mfcc=13)
mfccs_mean = np.mean(mfccs, axis=1)  # 计算每个MFCC的均值

       使用卷积神经网络(CNN)来处理提取到的音频特征。CNN适合处理空间结构数据,而RNN则更适合处理序列数据。在构建模型时,我们可以使用Keras框架来快速搭建网络结构。模型的训练过程包括前向传播和反向传播,前者通过输入特征计算输出,后者通过计算损失函数的梯度来更新模型参数。

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten

# 构建一个简单的CNN模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(X_train.shape[1], X_train.shape[2], 1)))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test))

       使用测试集进行评估,计算准确率、精确率、召回率等指标,可以帮助我们了解模型的效果。混淆矩阵是一种有效的工具,能够直观地展示模型在不同类别上的分类效果。通过这些评估指标,我们可以进一步优化模型或调整训练参数。情感识别完成后,将结果与音乐可视化技术结合起来,使得系统不仅能识别情感,还能以可视化的方式展示出来。可以根据识别出的情感生成不同颜色或形状的图形,来表达情感的变化。例如,当识别出“快乐”的情感时,可以使用明亮的颜色和动态的图形进行展示,而“悲伤”则可以使用较暗的颜色。这样的可视化能够增强用户体验,使得情感识别的结果更加直观。

import matplotlib.pyplot as plt

# 假设emotion是识别出的情感
emotion_color_map = {'happy': 'yellow', 'sad': 'blue', 'angry': 'red'}
plt.figure(figsize=(10, 5))
plt.plot(y_denoised, color=emotion_color_map[emotion])
plt.title(f'Emotion: {emotion}')
plt.show()

海浪学长项目示例:

最后

我是海浪学长,创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值