[剑指offer]矩形覆盖

在这里插入图片描述
思路:
用归纳法
n=1时,return 1
在这里插入图片描述
n=2时,return 2
在这里插入图片描述
n=2以上时,分两步考虑
第一次摆放一块21,占了一格,所以有f(n-1)种摆法
在这里插入图片描述
第一次摆放一块1
2,占了两格,因为上方摆放了一个12,下方就确定只能放12了,所以有f(n-2)种摆法
在这里插入图片描述
可得f(n)=f(n-1)+f(n-2),是一个斐波那契数列
实现:
和斐波那契数列一模一样,只需要改一下起始数值,本题n=1时f(n)=1

public class Solution {
    public int RectCover(int target) {
        if(target<=2)return target;
        int n1=1;
        int n2=2;
        int total=0;
        for(int i=2;i<target;i++){
            total=n1+n2;
            n1=n2;
            n2=total;  
        }
        return total;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值