- 题意:给你n个整数点,要你以这些点为顶点,围成两个长方形,这两个长方形不能相交(两个长方形的边及顶点不能相接触)。满足以上条件时,输出两个长方形包围的总面积,否则输出“imp”
- 算法:几何
- 思路:对角线上的两点可以确定一个长方形。n方遍历所有可能构成对角线的两点(x和y均不相同),确定一个矩形后,再n方遍历得到另一个不同的矩形。再算出两个矩形所包围的总面积。确定其是否相交可以用:
if(!(x2<x3 || y2<y3 || x1>x4 || y1>y4)) return -1;
#include <bits/stdc++.h>
#define pi acos(-1)
#define fastcin ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int INF = 0x3f3f3f3f;
const LL ll_INF = 1LL << 62;
const int maxn =10000 + 10;
const LL mod = 1e9+7;
string s;
int node[3][2]={2, 5, 5, 0, 7, 5};
vector<int> vec[2];
int jiaozheng(int p1, int p2)
{
if(s.size()==2 ) return 0;
int cnt=0;
for(int i=0; i<s.size(); i++){
if(i==p1 || i==p2) continue;
if(s[i]=='0') cnt++;
else return cnt;
}
return INF;
}
int main()
{
fastcin;
cin >> s; int len = s.size();
int minn = INF;
int lc1=-1, lc2=-1;
for(int i=len-1; i>=0 && lc2==-1; i--){
if(s[i]=='0') lc1==-1?(lc1=i):(lc2=i);
} if(lc1!=-1 && lc2!=-1) minn = (len-1+len-2)-(lc1+lc2);
for(int i=0; i<3; i++){
vec[0].clear(); vec[1].clear();
for(int j=0; j<2; j++){
for(int k=len-1; k>=0; k--){
if(s[k]-'0' == node[i][j]){
vec[j].push_back(k);
}
}
}
for(int j=0; j<vec[0].size(); j++){
for(int k=0; k<vec[1].size(); k++){
int tmp = abs(len-1-vec[1][k]);
tmp += len-2 - vec[0][j] + (vec[0][j] > vec[1][k] ? 1 : 0) + jiaozheng(vec[0][j], vec[1][k]);
minn = min(minn, tmp);
}
}
}
printf("%d\n", minn>=INF?-1:minn);
}