矩阵中的路径
vector<vector<int> > vis;//记录是否访问过
int dx[4]={0,0,-1,1};
int dy[4]={1,-1,0,0};
int ok=0;
bool dfs(vector<vector<char> >& board,int r,int c,int m,int n,string word,int index) //index标记是第几个字符
{
bool res;
if(index==word.length()) { return true;}
if(r<0||r>=m||c<0||c>=n) {//cout<<"越界"<<endl;
return false;}//越界
if(vis[r][c]==1||board[r][c]!=word[index]) {//cout<<"已访问/不符合return"<<endl;
return false;}
vis[r][c]=1;//标记为已经访问过
for(int i=0;i<4;i++)
{
//cout<<"原本:"<<r<<" "<<c<<"dfs:"<<" "<<r+dx[i]<<" "<<c+dy[i]<<" "<<endl;
res=dfs(board,r+dx[i],c+dy[i],m,n,word,index+1);
if(res) return true;
}
vis[r][c]=0;//还原,如果for循环中没有返回,说明这个点不能走,退回
return false;
}
bool exist(vector<vector<char> >& board, string word) {
int m=board.size();//行数
int n;
if(m!=0) n=board[0].size();
else {n=0;return false;}
vector<int> tmp;//初始化vis都没有访问过
for(int j=0;j<n;j++)
tmp.push_back(0);
for(int i=0;i<m;i++)
vis.push_back(tmp);
for(int i=0;i<m;i++)//dfs
for(int j=0;j<n;j++)
if(dfs(board,i,j,m,n,word,0)) return true;
return false;
}
这里dfs存在回溯,就需要把标记数组修改回去
欧拉回路
int c[maxn];//标记是否正在进行dfs,=1表示已经
进行结束,=0表示未进行,=-1表示正在进行dfs
int topo[maxn];//topo[i]=u表示topo排序中第i个点是图中下标为u的点
int G[maxn][maxn];
bool dfs(int u)
{
c[u]=-1;
for(int v=0;v<n;v++)
{
if(G[u][v])
{
if(c[v]<0}) return false;//c[v]=-1,表示这个和u相邻的点v已经在进行dfs了,说明G中有环(不然v不会在u之前进行dfs)
else if(!c[v]&&!dfs(v)) return false;//c[v]=0,然后进行dfs(v),得到dfs(v)==false,说明还是有环
//注意这里是没有讨论c[v]=1的情况的,已经进行完的不回成环
}
}
//循环结束,说明从u开始找到了一条topo
//因为如果没有topo,那么for循环不会正常结束,而是会在中间return false
c[u]=1;
topo[--t]=u;
return true;//说明从这一点开始,找到一条topo
}
boo topo()
{
t=n;
memset(c,0,sizeof(c));
for(int u=0;u<n;u++)if(!c[u])
{
if(!dfs(u)) return false;//如果任意一点返回了false,说明G中存在环,都不会有topo
}
return true;
}
当用dfs判断是否存在时候,可以让dfs的返回值是bool类型
用到回溯的时候,记得需要在最后把标记数组修改回去
拓扑排序中的c[]是标记数组,但是拓扑排序不存在回溯,如果出现环,直接return false,for循环结束说明找到了一个topo排序,所以标记数组只需要修改为完成dfs状态。
礼物的最大价值
用dfs的时候先判断是否需要回溯,这里是不需要回溯的,只需要把每一个可行解算出来即可
dfs+回溯:
void dfs(int r,int m)
{
//1.判断边界
//2.判断能不能走
//3.修改vis标记
//4.for遍历相邻点 dfs
//把vis标记改回来
}
注意其中的修改vis标记,是让在这个点继续的dfs中不会重复递归回起始这个点
eg:dfs(1,1) 那么遍历相邻点的时候,右边的点被遍历到dfs(1,2),在dfs(1,2)的时候(1,1)也是(1,2)的相邻点,那么此时因为(1,1)被标记过,就不会重复dfs了
把vis改回来,是当这个点开始的dfs都结束后,如果有从别的点递归到访问这个点,还是允许的。比如从(0,1)点遍历到(1,1)的时候,可能就可以dfs(1,1),因为在这个路径中(1,1)还没有被访问过