计蒜客:最大子矩阵

最大子矩阵
暴力版

#include<bits/stdc++.h>
using namespace std;
int Max=-1000,m,n,a[55][55];
int f(int x,int y,int t1,int t2)//求以x,y为起点,长t1,宽t2的矩阵之和
{
    int i,j,sum=0;
    for(i=x;i<=x+t1;i++)
    {
        for(j=y;j<=y+t2;j++)
        {
            sum+=a[i][j];
        }
    }
    return sum;
}
int main( )
{
    int i,j,k,m,n,t1,t2,t3,t4;
    scanf("%d%d",&n,&m);
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=m;j++)
        {
            scanf("%d",&a[i][j]);
        }
    }
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=m;j++)
        {
            int temp=a[i][j];
            for(t1=0;i+t1<=n;t1++)
            {
                for(t2=0;j+t2<=m;t2++)
                {
                    Max=max(Max,f(i,j,t1,t2));
                }
            }
        }
    }
    printf("%d",Max);
}

dp版

#include<bits/stdc++.h>
using namespace std;
int Max=-1000,m,n,dp[55][55];
int main( )
{
    int i,j,k,m,n,t1,t2,t3,t4;
    scanf("%d%d",&n,&m);
    for(i=1;i<=n;i++)
    {
        for(j=1;j<=m;j++)
        {
            scanf("%d",&t1);
            dp[i][j]=dp[i-1][j]+t1;//求出从第1行到第i行的每列之和
        }
    }
    for(i=1;i<=n;i++)
    {
        for(j=i;j<=n;j++)
        {
            int sum=0;
            for(k=1;k<=m;k++)//找出从第i行到第j行之间的最大子矩阵
            {
                sum+=dp[j][k]-dp[i-1][k];
                Max=max(Max,sum);
                sum=max(sum,0);//当sum小于0时令sum为0
            }
        }
    }
    printf("%d",Max);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值