给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
思路
简单的动态规划,建立数组dp,dp[y][x]表示到达坐标(y,x)的最小总和,因为只能向下或向右,所以dp[y][x]=grid[y][x]+min(dp[y-1][x],dp[y][x-1])(从上来或从左来,挑最小的那个)
代码
def minPathSum(self, grid):
dp=[]
for i in range(len(grid)):
dp.append([0]*len(grid[0]))
i=0
dp[0][0]=grid[0][0]
for i in range(1,len(dp[0])):
dp[0][i]=grid[0][i]+dp[0][i-1]#初始化第一行
for i in range(1,len(dp)):
dp[i][0]=grid[i][0]+dp[i-1][0]#初始化第一列
for y in range(1,len(dp)):
for x in range(1,len(dp[0])):
dp[y][x]=grid[y][x]+min(dp[y-1][x],dp[y][x-1])
return dp[-1][-1]