你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都围成一圈,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你在不触动警报装置的情况下,能够偷窃到的最高金额。
示例 1:
输入: [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。
示例 2:
输入: [1,2,3,1]
输出: 4
解释: 你可以先偷窃 1 号房屋(金额 = 1),然后偷窃 3 号房屋(金额 = 3)。
偷窃到的最高金额 = 1 + 3 = 4 。
思路
如果数量小于3个,那么只能偷一个,选最大的即可
对于其他情况,偷不偷第一个和最后一个房子只有3种可能,因为是个圈,
偷了第一个,第二个房子和最后一个房子不能偷,nums[2:-1]随意偷
偷了最后一个,倒数第二个房子和第一个房子不能偷,nums[1:-2]随意偷
两个都没偷 ,nums[1:-1]随意偷
计算3种情况的最大值,选出最大的那个
对于以上3种情况,因为有些地方不能偷,所以圈被不能偷的地方切成了线
对于线的情况,用动态规划即可
dp[i]储存偷了第i个房子时能偷到的最高金额,因为不能偷相邻的,所以只有两种情况,
1,偷了第i和i-2个,不能偷第i-1个
2,偷了第i和i-3个,不能偷第i-1个和第i-2个
dp[i]=nums[i]+max(dp[i-2],dp[i-3])
代码
def rob(self, nums: List[int]) -> int:
if(nums==[]):return 0
if(len(nums)<=3):return max(nums)
a=nums[0]+self.f(nums[2:-1])
b=nums[-1]+self.f(nums[1:-2])
c=self.f(nums[1:-1])
return max(a,b,c)
def f(self,nums):
dp=[0]*len(nums)
if(len(nums)<=2):return max(nums)
dp[2]=nums[2]+nums[0]
dp[1]=nums[1]
dp[0]=nums[0]
for i in range(3,len(nums)):
dp[i]=nums[i]+max(dp[i-2],dp[i-3])
return max(dp[-1],dp[-2])