给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。
思路
因为是二叉搜索树,可以容易判断这两个节点是否在同一个子树中(左子树或右子树),如果在同一个子树中,递归的进行下去直到这两个节点不在同一个子树
代码
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if((root.val>=p.val and root.val<=q.val) or (root.val<=p.val and root.val>=q.val)):return root#不在一个子树中,root为最近公共祖先
elif(root.val>p.val and root.val>q.val):return self.lowestCommonAncestor(root.left,p,q)#都在左子树中
elif(root.val<p.val and root.val<q.val):return self.lowestCommonAncestor(root.right,p,q)#都在右子树中