玲珑杯” Round #19 Buildings 【线段树+尺取法】+【vector + 尺取法】

29 篇文章 0 订阅
27 篇文章 0 订阅

这里写图片描述

第一种 线段树(维护区间的最大值和最小值)+尺取法

#include<bits/stdc++.h>
#define LL long long
#define lele  o<<1
#define riri  o<<1|1
#define lson o<<1,le,mid
#define rson o<<1|1,mid+1,ri
using namespace std;
const int MAXN =2*1e5+10;
struct Tree{
    int l,r;
    int maxx;
    int minn;
}tree[MAXN<<2];
int n,k;
void pushup(int o){
    tree[o].maxx=max(tree[lele].maxx,tree[riri].maxx);
    tree[o].minn=min(tree[lele].minn,tree[riri].minn);
}
void build(int o,int le,int ri){
    tree[o].l=le;tree[o].r=ri;
    if(le==ri) {
        int val;scanf("%d",&val);
        tree[o].maxx=tree[o].minn=val;
        return ;
    }
    int mid =(le+ri)>>1;
    build(lson);
    build(rson);
    pushup(o);
}
 int querymax(int o,int le,int ri)   {
    if(le<=tree[o].l&&ri>=tree[o].r)    return tree[o].maxx;
    int mid=(tree[o].l+tree[o].r)>>1;
    if(ri<=mid) querymax(lele,le,ri);
    else if(le>mid ) querymax(riri,le,ri);
    else  return max(querymax(lele,le,mid),querymax(riri,mid+1,ri));
 }
 int querymin(int o,int le,int ri)   {
    if(le<=tree[o].l&&ri>=tree[o].r)    return tree[o].minn;
    int mid=(tree[o].l+tree[o].r)>>1;
    if(ri<=mid) querymin(lele,le,ri);
    else if(le>mid ) querymin(riri,le,ri);
    else  return min(querymin(lele,le,mid),querymin(riri,mid+1,ri));
 }
int main(){
    while(scanf("%d%d",&n,&k)!=EOF){
        build(1,1,n);
        int le=1;int ri=1;
        LL sum=0;
        for(;ri<=n&&le<n;){ // 尺取法
            while((querymax(1,le,ri)-querymin(1,le,ri))>k)  le++;  
            sum+=(LL)(ri-le);  ri++; 
        }
        printf("%lld\n",sum+n);
    }
    return 0;
}

分析 二
可以用vector来维护区间的有序性,从而找到最大值和最小值,从而尺取法解。
代码

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN =1e6+100;
int arr[MAXN];
vector<int>ve;
int main(){
    int n,k;
    while(scanf("%d%d",&n,&k)!=EOF){
        ve.clear();
        for(int i=1;i<=n;i++) scanf("%d",&arr[i]);
        if(n==1) {puts("1");continue;}
    int le,ri; le=ri=1;  ve.push_back(arr[1]);
    int siz=1; LL sum=0;
        for(int i=2;i<=n;i++){
            ri=i;
            int ans=lower_bound(ve.begin(),ve.end(),arr[ri])-ve.begin();
            ve.insert(ve.begin()+ans,arr[ri]); siz++;

            while(ve[siz-1]-ve[0]>k){
                ans=lower_bound(ve.begin(),ve.end(),arr[le++])-ve.begin();
                ve.erase(ve.begin()+ans); siz--;
            }
            sum+=(LL)(ri-le); //如果(max-min)<=k 那么max和区间里的所有值的差肯定也都小于等于k
        }
    printf("%lld\n",sum+n);  //最后加上自身的区间一定是小于等于k的 
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值