分赌注问题

问题概述

水平相同的两个赌徒A和B,约定先胜 t t t局的人赢得赌注,在赌博中的某时刻,两赌徒中止赌博,此时A胜 r r r局,B胜 s s s局,应如何合理分配赌注?

问题分析

公平起见,最常见的分堵赌注方式即为计算如果继续进行赌博,两个人分别获胜的概率,依据获胜概率来分赌注,即若记两人分别取得最后胜利的概率为 p A , p B p_A,p_B pA,pB满足 p A + p B = 1 p_A+p_B=1 pA+pB=1,则两人应按照 p A : p B p_A:p_B pA:pB的比例分赌注。因此,接下来的目标为分别计算两人的获胜概率。为了描述问题方便起见,假设 r ⩾ s r\geqslant s rs,并记每场赌博A获胜的概率为 p = 0.5 p=0.5 p=0.5

问题解答

显然,赌博最少会在 t − r t-r tr次后结束,即A赢了这之后的所有赌博,最终取得胜利。而最多,赌博会在 2 t − r − s − 1 2t-r-s-1 2trs1次后结束,即将整场赌博打满,最终A、B分别赢得 t t t t − 1 t-1 t1场。

思路一

t − r ⩽ i ⩽ 2 t − r − s − 1 t-r\leqslant i\leqslant2t-r-s-1 tri2trs1,可以考虑分别计算赌博在 i i i场后结束,A、B分别获胜的概率 p A ( i ) p_A(i) pA(i) p B ( i ) p_B(i) pB(i),最后分别对其求和即可得到A、B分别最终获胜的概率。

先考虑A。显然,当 i = t − r i=t-r i=tr时, p A ( t − r ) = p t − r , p_A(t-r)=p^{t-r}, pA(tr)=ptr, 表示A连续获胜 i i i轮。

i = t − r + 1 i=t-r+1 i=tr+1时,若要赌博在i场时恰好结束,并且A获胜,则A要继续赢 t − r t-r tr次,B赢1次。注意到B赢得一次不可能在最后一次出现,否则在前一次A已经取胜,即确定A在最后一次获胜。因此有
p A ( t − r ) = p t − r ( 1 − p ) ( t − r t − r − 1 ) . p_A(t-r)=p^{t-r} (1-p) \binom{t-r}{t-r-1}. pA(tr)=ptr(1p)(tr1tr).

i i i取更一般的值时,若要赌博在i场时恰好结束,并且A获胜,则A要继续赢 t − r t-r tr次,B赢 i − ( t − r ) i-(t-r) i(tr)次。同时有B赢的不可能在最后一次出现,否则在前一次A已经取胜,即确定A在最后一次获胜。因此有
p A ( i ) = p t − r ( 1 − p ) i − t + r ( i − 1 t − r − 1 ) . p_A(i)=p^{t-r} (1-p)^{i-t+r} \binom{i-1}{t-r-1}. pA(i)=ptr(1p)it+r(tr1i1).

n = t − r n=t-r n=tr表示A要获胜还需要赢的次数,并注意到 p = 0.5 p=0.5 p=0.5,上式化简为
p A ( i ) = p i ( i − 1 n − 1 ) ,   n ⩽ i ⩽ 2 t − r − s − 1. p_A(i)=p^{i}\binom{i-1}{n-1},\text{ }n\leqslant i\leqslant2t-r-s-1. pA(i)=pi(n1i1), ni2trs1.

对于B,注意到,在 i ⩾ t − s i\geqslant t-s its之后B才可能获胜。记 m = t − s m=t-s m=ts,表示B要获胜还需要赢的次数,与A类似有
p B ( i ) = p i ( i − 1 m − 1 ) ,   m ⩽ i ⩽ 2 t − r − s − 1. p_B(i)=p^{i}\binom{i-1}{m-1},\text{ }m\leqslant i\leqslant2t-r-s-1. pB(i)=pi(m1i1), mi2trs1.

由此,我们得出A、B分别获胜的概率分别为 p A = ∑ i = n 2 t − r − s − 1 p A ( i ) = ∑ i = n n + m − 1 p i ( i − 1 n − 1 ) , p_A = \sum_{i=n}^{2t-r-s-1}p_A(i) = \sum_{i=n}^{n+m-1}p^{i}\binom{i-1}{n-1}, pA=i=n2trs1pA(i)=i=nn+m1pi(n1i1),

p B = ∑ i = m 2 t − r − s − 1 p B ( i ) = ∑ i = m n + m − 1 p i ( i − 1 m − 1 ) . p_B = \sum_{i=m}^{2t-r-s-1}p_B(i) = \sum_{i=m}^{n+m-1}p^{i}\binom{i-1}{m-1}. pB=i=m2trs1pB(i)=i=mn+m1pi(m1i1).

思路二

A的获胜条件也可以直接抽象为:若A在每一把赌博中获胜的概率均为 p ( = 0.5 ) p(=0.5) p(=0.5),A需要在B赢 m m m次之前赢 n n n次,其中 n , m n,m n,m定义均与之前相同,分别表示A、B要取胜所需的最少次数。而这个条件,等价于如下条件:如果赌博不会终止,则A需要在接下来的 n + m − 1 n+m-1 n+m1次中赢得至少 n n n次。这个结果的概率可以直接使用二项分布求解,即赢 i ( n ⩽ i ⩽ n + m − 1 ) i(n\leqslant i\leqslant n+m-1) i(nin+m1)次的概率为 p i ( 1 − p ) n + m − 1 − i ( n + m − 1 i ) p^{i} (1-p)^{n+m-1-i} \binom{n+m-1}{i} pi(1p)n+m1i(in+m1),因此A最终获胜的概率为其求和,即
p A = ∑ i = n n + m − 1 p i ( 1 − p ) n + m − 1 − i ( n + m − 1 i ) , p_A = \sum_{i=n}^{n+m-1}p^{i} (1-p)^{n+m-1-i} \binom{n+m-1}{i}, pA=i=nn+m1pi(1p)n+m1i(in+m1),
其实质为次数为 n + m − 1 n+m-1 n+m1的二项式的后 m m m项之和。类似得B获胜概率为
p B = ∑ i = m n + m − 1 ( 1 − p ) i p n + m − 1 − i ( n + m − 1 i ) 。 p_B = \sum_{i=m}^{n+m-1}(1-p)^{i} p^{n+m-1-i} \binom{n+m-1}{i}。 pB=i=mn+m1(1p)ipn+m1i(in+m1)

p B p_B pB中做代换 j = n + m − 1 − i j=n+m-1-i j=n+m1i,可以验证 p A + p B = ∑ i = n n + m − 1 p i ( 1 − p ) n + m − 1 − i ( n + m − 1 i ) + ∑ i = m n + m − 1 ( 1 − p ) i p n + m − 1 − i ( n + m − 1 i ) = ∑ i = n n + m − 1 p i ( 1 − p ) n + m − 1 − i ( n + m − 1 i ) + ∑ j = 0 n − 1 p j ( 1 − p ) n + m − 1 − j ( n + m − 1 j ) = ∑ i = 0 n + m − 1 p i ( 1 − p ) n + m − 1 − i ( n + m − 1 i ) = [ p + ( 1 − p ) ] n + m − 1 = 1. \begin{aligned} p_A + p_B &= \sum_{i=n}^{n+m-1}p^{i} (1-p)^{n+m-1-i} \binom{n+m-1}{i} + \sum_{i=m}^{n+m-1}(1-p)^{i} p^{n+m-1-i} \binom{n+m-1}{i}\\ &=\sum_{i=n}^{n+m-1}p^{i} (1-p)^{n+m-1-i} \binom{n+m-1}{i} + \sum_{j=0}^{n-1}p^{j} (1-p)^{n+m-1-j} \binom{n+m-1}{j}\\ &=\sum_{i=0}^{n+m-1}p^{i} (1-p)^{n+m-1-i} \binom{n+m-1}{i}\\ &=[p+(1-p)]^{n+m-1}=1. \end{aligned} pA+pB=i=nn+m1pi(1p)n+m1i(in+m1)+i=mn+m1(1p)ipn+m1i(in+m1)=i=nn+m1pi(1p)n+m1i(in+m1)+j=0n1pj(1p)n+m1j(jn+m1)=i=0n+m1pi(1p)n+m1i(in+m1)=[p+(1p)]n+m1=1.

两种思路的比较

下面证明两种思路得到的两种 p A p_A pA的表达式是等价的,即证明
∑ i = n n + m − 1 p n ( 1 − p ) i − n ( i − 1 n − 1 ) = ∑ i = n n + m − 1 p i ( 1 − p ) n + m − 1 − i ( n + m − 1 i ) . \sum_{i=n}^{n+m-1}p^{n} (1-p)^{i-n} \binom{i-1}{n-1} = \sum_{i=n}^{n+m-1}p^{i} (1-p)^{n+m-1-i} \binom{n+m-1}{i}. i=nn+m1pn(1p)in(n1i1)=i=nn+m1pi(1p)n+m1i(in+m1).

注意到上式两端都有 p n p^n pn项,消去即证 ∑ i = n n + m − 1 ( 1 − p ) i − n ( i − 1 n − 1 ) = ∑ i = n n + m − 1 p i − n ( 1 − p ) n + m − 1 − i ( n + m − 1 i ) . \sum_{i=n}^{n+m-1} (1-p)^{i-n} \binom{i-1}{n-1} = \sum_{i=n}^{n+m-1}p^{i-n} (1-p)^{n+m-1-i} \binom{n+m-1}{i}. i=nn+m1(1p)in(n1i1)=i=nn+m1pin(1p)n+m1i(in+m1).

注意到上式左侧为 1 − p 1-p 1p的多项式,因此考虑记 q = 1 − p q=1-p q=1p,将右端的 p p p项展开,证明对应项系数相等。
右端 = ∑ i = n n + m − 1 q n + m − 1 − i ( 1 − q ) i − n ( n + m − 1 i ) = q m − 1 ( n + m − 1 n ) + q m − 2 ( 1 − q ) ( n + m − 1 n + 1 ) + ⋯ + ( 1 − q ) m − 1 ( n + m − 1 n + m − 1 ) . \begin{aligned} \text{右端} &=\sum_{i=n}^{n+m-1}q^{n+m-1-i}(1-q)^{i-n} \binom{n+m-1}{i}\\ &=q^{m-1}\binom{n+m-1}{n}+q^{m-2}(1-q)\binom{n+m-1}{n+1}+\cdots+(1-q)^{m-1}\binom{n+m-1}{n+m-1}. \end{aligned} 右端=i=nn+m1qn+m1i(1q)in(in+m1)=qm1(nn+m1)+qm2(1q)(n+1n+m1)++(1q)m1(n+m1n+m1).

将上式中的 ( 1 − q ) (1-q) (1q)的次幂展开,得到 右端 = q m − 1 ( n + m − 1 n ) + [ q m − 2 − q m − 1 ] ( n + m − 1 n + 1 ) + … [ q 2 ( m − 3 0 ) − q 3 ( m − 3 1 ) + ⋯ + ( − q ) m − 3 ( m − 1 m − 3 ) ] ( n + m − 1 n + m − 3 ) + [ q − q 2 ( m − 2 1 ) + q 3 ( m − 2 2 ) − ⋯ + ( − q ) m − 2 ( m − 1 m − 2 ) ] ( n + m − 1 n + m − 2 ) + [ 1 − q ( m − 1 1 ) + q 2 ( m − 1 2 ) + q 3 ( m − 1 3 ) − ⋯ + ( − q ) m − 1 ( m − 1 m − 1 ) ] ( n + m − 1 n + m − 1 ) . \begin{aligned} \text{右端}=q^{m-1}\binom{n+m-1}{n} &+\\ \left[q^{m-2}-q^{m-1}\right] \binom{n+m-1}{n+1} &+\\ \ldots&\\ \left[q^2\binom{m-3}{0}-q^3\binom{m-3}{1}+\cdots +(-q)^{m-3}\binom{m-1}{m-3}\right] \binom{n+m-1}{n+m-3} &+\\ \left[q-q^2\binom{m-2}{1}+q^3\binom{m-2}{2}-\cdots +(-q)^{m-2}\binom{m-1}{m-2}\right] \binom{n+m-1}{n+m-2} &+\\ \left[1-q\binom{m-1}{1}+q^2\binom{m-1}{2}+q^3\binom{m-1}{3}-\cdots +(-q)^{m-1}\binom{m-1}{m-1}\right] \binom{n+m-1}{n+m-1} &.\\ \end{aligned} 右端=qm1(nn+m1)[qm2qm1](n+1n+m1)[q2(0m3)q3(1m3)++(q)m3(m3m1)](n+m3n+m1)[qq2(1m2)+q3(2m2)+(q)m2(m2m1)](n+m2n+m1)[1q(1m1)+q2(2m1)+q3(3m1)+(q)m1(m1m1)](n+m1n+m1)++++.

上式中易得 q k ( 0 ⩽ k ⩽ m − 1 ) q^{k}(0\leqslant k\leqslant m-1) qk(0km1)的系数 a k a_k ak
a k = ∑ i = 0 k ( − 1 ) i ( m − k − 1 + i i ) ( n + m − 1 n + m − 1 − k + i ) = ∑ i = 0 k ( − 1 ) i ( m − k − 1 + i i ) ( n + m − 1 k − i ) . \begin{aligned} a_k=&\sum_{i=0}^{k}(-1)^{i}\binom{m-k-1+i}{i}\binom{n+m-1}{n+m-1-k+i}\\ =&\sum_{i=0}^{k}(-1)^{i}\binom{m-k-1+i}{i}\binom{n+m-1}{k-i}. \end{aligned} ak==i=0k(1)i(imk1+i)(n+m1k+in+m1)i=0k(1)i(imk1+i)(kin+m1).

由上指标反转公式,得 ( − 1 ) i ( m − k − 1 + i i ) = ( k − m i ) . (-1)^{i}\binom{m-k-1+i}{i}=\binom{k-m}{i}. (1)i(imk1+i)=(ikm).

由范德蒙德卷积,进而有,
a k = ∑ i = 0 k ( k − m i ) ( n + m − 1 k − i ) = ( n + k − 1 k ) . a_k=\sum_{i=0}^{k}\binom{k-m}{i}\binom{n+m-1}{k-i}=\binom{n+k-1}{k}. ak=i=0k(ikm)(kin+m1)=(kn+k1).

在上式中, 左侧 = ∑ k = 0 m − 1 q k ( n + k − 1 n − 1 ) . \text{左侧}=\sum_{k=0}^{m-1}q^k\binom{n+k-1}{n-1}. 左侧=k=0m1qk(n1n+k1).

显然有对应项系数相等。因此,两种思路中得到得A获胜概率表达式是等价的。同理可得,B的表达式也是等价的。

仿真实验

下面带入具体数据,进行仿真,以检验上述求解的正确性。假设赌徒A和B的胜率相同,即每一局的A和B都有 p = 0.5 p=0.5 p=0.5的机会赢得胜利,假设先胜 s = 20 s=20 s=20局的人赢得赌注,并假设在A胜 r = 10 r=10 r=10局且B胜 s = 7 s=7 s=7局的时候中止赌博。

使用Matlab随机数产生器模拟赌博结果,产生的随机数大于0.5则认为单局赌博A获胜,否则B获胜。模拟得到下表。

仿真次数1001000100001000001000000
A获胜频率0.790.7230.73400.736020.738237

而计算出的理论结果为 p A = 0.738266468048096 p_A = 0.738266468048096 pA=0.738266468048096

可见,随着模拟次数的增加,A获胜的比率逐渐接近理论计算概率。这也侧面说明理论计算的正确性。

代码

仿真

clear
t = 20;
r = 10;
s = 7;
ma = t*2-r-s-1;
p = 1/2;

tot = 1000000;
vina = 0;
vinb = 0;
for i = 1:tot
	sa = r;
	sb = s;
	while sa<t && sb<t
		if(rand()>0.5)
			sa = sa + 1;
		else
			sb = sb + 1;
		end
	end
	if sa==t
		vina = vina + 1;
	else
		vinb = vinb + 1;
	end
end
[vina/tot]

计算

t = 20;
r = 10;
s = 7;
ma = t*2-r-s-1;
p = 0.5;
a_left = t - r;
b_left = t - s;

[P(a_left,b_left, p),P(b_left,a_left, 1-p)]

function sum = P(n,m,p)
	sum = 0;
	for k= n:n+m-1
		sum = sum + nchoosek(n+m-1,k)*p^(k)*(1-p)^(n+m-1-k);
	end
end

  • 12
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值