- 博客(99)
- 资源 (1)
- 收藏
- 关注
原创 大模型评测调研报告
一、LLM Evaluation综述●一文了解大模型性能评测数据、指标以及框架:知名开源:车载:汽车行业中文大模型测评基准,基于多轮开放式问题的细粒度评测排名榜单:https://www.superclueai.com/上述几个都是论文为主。。。
2025-04-27 21:08:32
817
原创 Jetson AGX Orin上使用VLLM部署Qwen2.5笔记
172.17.0.1 - 这是Docker的默认网桥接口的IP地址。当你安装Docker时,它会创建一个名为docker0的虚拟网桥接口,默认使用172.17.0.0/16网段。jetson-container命令运行的容器使用的是host网络,可以直接绑定主机的端口,因此此处没有端口转发的问题。: 会出现交互式界面,提示"Command (m for help)",这是正常的,fdisk在等待输入命令。现在你的设备上已经安装并可用SSD,你可以利用这额外的存储容量来存放占用大量空间的Docker目录。
2025-04-21 00:18:51
1388
原创 PAT乙级1007
• 时间复杂度: isprime 函数的时间复杂度是 O(sqrt(a)),所以整体代码的时间复杂度是 O(N * sqrt(N)),这对于最大 N = 100000 可能有一定的性能瓶颈。• 对于每个 i,检查 i 和 i-2 是否都是素数,如果是,说明它们是一个符合条件的素数对,增加计数 cnt。2. 筛选过程: 从 2 开始,如果某个数是素数,则标记它的倍数为 false,直到 i * i > n。• 如果该数字被标记为素数,则从它的平方开始,将它的所有倍数标记为“非素数”。
2025-03-25 20:24:30
499
原创 Ubuntu20.04安装NVIDIA显卡驱动
会显示recommended的下载(但是这里推荐的535版本的driver并不是真正匹配当前显卡的,只是ubuntu官方维护到的最新版本,下载后会导致ubuntu无法进入图形界面)Nouveau是一个开源的显卡驱动,与NVIDIA的官方驱动冲突。在安装NVIDIA驱动之前,需要禁用它。查看发现是NVIDIA显卡,因此装NVIDIA的显卡驱动。之后就是启动,ubuntu会使用默认核显llvm驱动。重启后安装的显卡驱动就生效了。
2024-11-29 16:55:44
1223
原创 Linux中查找在某一文件夹下有没有给定名字的文件
如果你知道你要搜索的文件是Java文件,并且你知道Java文件的扩展名通常是。以下是一个基本的命令示例,它会在当前目录及其所有子目录中搜索名为。在Linux系统中,如果你想要从一个目录及其子目录中找到名为。这个命令可以递归地搜索指定目录下的所有文件和目录。后面跟着的是你想要搜索的文件名。时要小心,确保你不会无意中修改或删除重要的系统文件。替换为你的Android源代码的实际路径。请注意,如果你没有足够的权限访问某些目录,如果你想要限制搜索的目录深度,可以使用。文件可能位于特定的目录下,比如。
2024-09-29 15:24:32
484
原创 在Ubuntu上使用阿里源安装docker
这将下载一个测试镜像并运行一个简单的容器。你应该会看到 Docker 成功运行的确认信息。你应该会看到 Docker 的版本信息。
2024-09-11 17:07:03
1142
原创 就地更新与复制并返回的区别(C++)
特性就地更新(In-place Update)复制并返回(Copy and Return)方法直接修改传入的数据结构创建并返回修改后的新数据结构内存使用更节省内存,因为不创建新实例占用更多内存,因为要创建数据结构的副本性能通常更高效,特别是处理大型数据结构时通常开销更大,特别是数据结构较大时可读性对于大数据结构或需要高性能的情况更为有用对于小数据结构或不要求高性能的情况,代码更清晰数据安全原始数据被直接修改原始数据保持不变适用场景大型数据结构、频繁调用的热点代码路径。
2024-09-11 12:47:07
489
原创 rust学习笔记
使用cargo:推荐用于管理 Rust 项目的整个生命周期。使用rustc:适用于编译单个 Rust 文件或简单的项目。选择工具时,根据你的需要和项目的复杂度来决定。
2024-09-09 13:24:15
862
原创 Java中的强引用、软引用、弱引用和虚引用于JVM的垃圾回收机制
强引用:最常见的引用类型,不会被垃圾回收。软引用:在内存不足时会被回收,适用于缓存。弱引用:在垃圾回收时会被回收,适用于对内存敏感的数据结构,如 WeakHashMap。虚引用:不能直接访问对象内容,主要用于跟踪对象的垃圾回收情况。
2024-09-06 15:13:50
835
原创 Linux中的wc -l 和 ls -l 命令
此行表示一个名为的目录,它的权限为drwxr-xr-x(所有者拥有全部权限,同组用户和其他用户仅有读和执行权限)。这个目录的所有者是lindsey,所属组是staff,目录的大小为96字节,最后修改时间是9月5日 11:45。wc -l:统计文件或输入流中的行数。ls -l:以长格式列出目录内容,显示详细的文件和目录信息。
2024-09-05 12:42:28
2662
原创 Linux中的管道操作符|
管道操作符是命令行中的重要工具,用于将一个命令的输出作为另一个命令的输入,帮助用户简化复杂的操作流程。在日常操作中,管道操作符常被用来处理、过滤和格式化数据,是Unix/Linux命令行使用的核心技巧之一。
2024-09-05 12:37:59
878
原创 Linux中的grep命令
grep是一个强大的文本搜索工具,支持多种选项和正则表达式匹配,适用于在文件、输出和目录中快速查找特定文本模式。它常用于脚本编写、数据分析、日志文件检查等任务中。
2024-09-05 12:31:34
564
原创 Linux中的echo命令
echo命令是一个简单而强大的命令行工具,用于在终端中显示文本或者将文本输出重定向到文件。虽然它的功能看起来简单,但它有很多不同的用法和操作方式。以下是echo。
2024-09-05 12:18:40
1231
原创 Python知识点复习
左闭右闭traceback库中的获取异常追踪的详细信息==比较的是对象的值(内容)。is比较的是对象的身份(是否是同一个对象)。这两个操作符在比较对象时的行为差异在实际编程中是非常重要的,尤其是当处理可变对象(如列表、字典等)和不可变对象(如整数、字符串、元组等)时。==比较的是对象的值(内容)。is比较的是对象的身份(是否是同一个对象)。这两个操作符在比较对象时的行为差异在实际编程中是非常重要的,尤其是当处理可变对象(如列表、字典等)和不可变对象(如整数、字符串、元组等)时。
2024-05-23 19:30:07
1079
1
原创 JAVA知识点复习
SQL 优化,JVM、DB,Tomcat 参数调优 >硬件性能优化 (内存升级、CPU 核心数增加、机械硬盘一> 固态硬盘等等)>业务逻辑优化/缓存 > 读写分离、集群等 > 分库分表要理解性能优化的必知法则,首先需要了解优化的不同层次和顺序,以及每种优化方法的具体内容和作用。
2024-05-22 21:40:21
931
原创 Llama 3超级课堂作业笔记
Github 文档:https://github.com/SmartFlowAI/Llama3-TutorialB站视频:https://www.bilibili.com/video/BV1Kr421u71u/
2024-05-19 22:00:23
1018
原创 书生浦语训练营第四次课笔记:XTuner 微调 LLM:1.8B、多模态、Agent
在不同量级的模型上,训练速度都是比LLaMa-Factory显著的更快与LLaMa-Factory相比,同样是LLaMa2 70B超大参数量的模型,在不同的数据长度下,Xtuner的表现也是比LLaMa-Factory更好XTunner对性能优化和显存优化做的更好!
2024-05-05 23:19:06
603
原创 书生浦语训练营二期第三次作业
检索过程中,茴香豆会将输入问题与两个列表中的问题在向量空间进行相似性比较,判断该问题是否应该回答,避免群聊过程中的问答泛滥。确定的回答的问题会利用基础模型提取关键词,在知识库中检索 top K 相似的 chunk,综合问题和检索到的 chunk 生成答案。提取知识库特征,创建向量数据库。数据库向量化的过程应用到了 LangChain 的相关模块,默认嵌入和重排序模型调用的网易 BCE 双语模型,如果没有在 config.ini 文件中指定本地模型路径,茴香豆将自动从 HuggingFace 拉取默认模型。
2024-04-08 04:27:05
838
1
原创 书生·浦语训练营二期第二次课后作业
使用 Hugging Face 官方提供的 huggingface-cli 命令行工具。以下内容将展示使用 huggingface_hub 下载模型中的部分文件。新建 python 文件,填入以下代码,运行即可。
2024-04-04 03:06:00
496
原创 书生·浦语训练营二期第一次笔记
先前的评测方案是做多选题,模型可能存在猜测的因素。而循环评测是对选项进行轮换,只有在能够答对所有轮换的选项后才能说明它的回答是正确的。我们能利用书生·浦语的框架,完整的开发属于自己的大模型应用。相对于第一期,InternLM2增加了Lagent和AgentLego。InternLM2:在Base基础上,在多个能力进行了强化,更优秀的基座模型。InternLM2-Chat:在Base基础上,再经过SFT和RLHF对齐后的对话模型。InternLM2-Base:高质量、强可塑性的基座模型。
2024-03-31 01:01:33
587
原创 Transformers for Machine Learning: A Deep Dive阅读笔记
给定一个实数向量Zz1z2zKZz1z2...zK,其中KKKSoftmaxziezi∑j1KezjSoftmaxzi∑j1Kezjezi对于向量ZZZ中的每一个元素ziz_izi,Softmax函数首先计算ezie^{z_i}ezi,即ziz_izi的指数。然后,将这个指数除以所有元素指数的总和。
2024-03-24 21:40:11
1368
原创 LeetCode Hot100 哈希相关题目(1、49、128)C++
【代码】LeetCode Hot100 哈希相关题目(1、49、128)C++
2024-03-20 16:24:41
308
原创 GitHub与Git命令使用笔记
这些步骤假设已经有一个本地项目和一个远程仓库,并且希望将远程仓库的内容合并到本地项目中。在未来,每当完成了一系列更改并希望将这些更改推送到GitHub时,只需要重复上面的。如果你现在不想提交这些更改,但希望稍后再处理,你可以使用贮藏(stash)功能将更改临时保存起来。如果你还没有本地分支对应于远程分支,你可以使用以下命令创建并切换到一个新的本地分支,这个分支会跟踪远程分支(将。如果已经有了一个本地分支并希望将远程分支的变更合并到这个本地分支中,确保现在就在那个本地分支上。如果只想添加特定文件,可以将。
2024-03-19 18:46:10
845
原创 使用Pytorch进行梯度下降的计算
输出:这段代码演示了使用PyTorch自动微分功能(autograd)来训练一个简单的线性回归模型。线性回归的目的是找到一个权重 (w),使得模型 (f(x) = w \times x) 能够尽可能准确地预测给定输入 (x) 对应的输出 (y)。这个例子中,我们希望模型学习到的权重使得 (f(x)) 接近真实函数 (f(x) = 2x)。初始化数据和权重:定义模型和损失函数:训练过程:自动梯度计算:PyTorch的自动微分引擎(autograd)使得计算梯度变得简单。通过在损失张量上调用 方法,PyTo
2024-03-10 19:58:31
497
原创 使用Numpy手工模拟梯度下降算法
通过不断重复这个过程(前向传播、损失计算、梯度计算、权重更新),www逐步被调整,以最小化模型的总损失。每次迭代,梯度告诉我们如何调整www以减少损失,学习率α\alphaα控制了这个调整的步长。随着迭代的进行,模型预测ypredypred会逐渐接近真实值YYY,损失函数值会持续减小,直至收敛到最小值或达到学习的终止条件。
2024-03-10 19:16:28
1081
原创 Pytorch学习资料
Pytorch Tutorial: https://www.youtube.com/playlist?list=PLqnslRFeH2UrcDBWF5mfPGpqQDSta6VK4PyTorch for Deep Learning & Machine Learning – Full Course: https://www.youtube.com/watch?v=V_xro1bcAuAPyTorch for Deep Learning & Machine Learning – Full
2024-03-10 02:36:26
419
原创 PyTorch会在每次.backward()调用时会累积梯度的问题
这段代码展示了在PyTorch中如何计算梯度、梯度累积的特性以及清空梯度的重要性。在实际训练模型时,适时清空梯度是保证模型正确学习的关键步骤之一。
2024-03-10 02:17:20
1361
原创 Pytorch报错:grad can be implicitly created only for scalar outputs
创建一个v,作为链式法则中的Jacobine矩阵当执行时,实际上进行的操作是计算向量y相对于其输入张量x的向量-雅可比乘积(vector-Jacobian product, VJP)。这个过程可以更清晰地理解backward方法的工作原理以及v的作用。假设我们有向量函数yfx,其中x和y都是向量,x∈Rny∈Rm。雅可比矩阵J是f相对于x的导数的矩阵表示,其中每个元素Jij∂xj∂yi。
2024-03-09 23:07:19
1690
汇编语言实验环境(包括DOSBox,Debug,MASM,LINK等)
2022-06-15
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人