自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(99)
  • 资源 (1)
  • 收藏
  • 关注

原创 jetson chroma

chromadb。

2025-06-05 22:25:51 269

转载 USB拆解图文

https://zhuanlan.zhihu.com/p/600511346

2025-06-04 15:35:21 12

原创 Ubuntu静态IP配置信息查看命令

Ubuntu静态IP配置信息查看命令。

2025-05-27 00:53:54 572

原创 大模型评测调研报告

一、LLM Evaluation综述●一文了解大模型性能评测数据、指标以及框架:知名开源:车载:汽车行业中文大模型测评基准,基于多轮开放式问题的细粒度评测排名榜单:https://www.superclueai.com/上述几个都是论文为主。。。

2025-04-27 21:08:32 817

原创 docker配置

bin/bashwhile true;dowait $!;sleepdone。

2025-04-24 13:58:01 203

原创 Jetson AGX Orin上使用VLLM部署Qwen2.5笔记

172.17.0.1 - 这是Docker的默认网桥接口的IP地址。当你安装Docker时,它会创建一个名为docker0的虚拟网桥接口,默认使用172.17.0.0/16网段。jetson-container命令运行的容器使用的是host网络,可以直接绑定主机的端口,因此此处没有端口转发的问题。: 会出现交互式界面,提示"Command (m for help)",这是正常的,fdisk在等待输入命令。现在你的设备上已经安装并可用SSD,你可以利用这额外的存储容量来存放占用大量空间的Docker目录。

2025-04-21 00:18:51 1388

原创 PAT乙级1007

• 时间复杂度: isprime 函数的时间复杂度是 O(sqrt(a)),所以整体代码的时间复杂度是 O(N * sqrt(N)),这对于最大 N = 100000 可能有一定的性能瓶颈。• 对于每个 i,检查 i 和 i-2 是否都是素数,如果是,说明它们是一个符合条件的素数对,增加计数 cnt。2. 筛选过程: 从 2 开始,如果某个数是素数,则标记它的倍数为 false,直到 i * i > n。• 如果该数字被标记为素数,则从它的平方开始,将它的所有倍数标记为“非素数”。

2025-03-25 20:24:30 499

原创 Ubuntu20.04安装NVIDIA显卡驱动

会显示recommended的下载(但是这里推荐的535版本的driver并不是真正匹配当前显卡的,只是ubuntu官方维护到的最新版本,下载后会导致ubuntu无法进入图形界面)Nouveau是一个开源的显卡驱动,与NVIDIA的官方驱动冲突。在安装NVIDIA驱动之前,需要禁用它。查看发现是NVIDIA显卡,因此装NVIDIA的显卡驱动。之后就是启动,ubuntu会使用默认核显llvm驱动。重启后安装的显卡驱动就生效了。

2024-11-29 16:55:44 1223

原创 Linux中查找在某一文件夹下有没有给定名字的文件

如果你知道你要搜索的文件是Java文件,并且你知道Java文件的扩展名通常是。以下是一个基本的命令示例,它会在当前目录及其所有子目录中搜索名为。在Linux系统中,如果你想要从一个目录及其子目录中找到名为。这个命令可以递归地搜索指定目录下的所有文件和目录。后面跟着的是你想要搜索的文件名。时要小心,确保你不会无意中修改或删除重要的系统文件。替换为你的Android源代码的实际路径。请注意,如果你没有足够的权限访问某些目录,如果你想要限制搜索的目录深度,可以使用。文件可能位于特定的目录下,比如。

2024-09-29 15:24:32 484

原创 在Ubuntu上使用阿里源安装docker

这将下载一个测试镜像并运行一个简单的容器。你应该会看到 Docker 成功运行的确认信息。你应该会看到 Docker 的版本信息。

2024-09-11 17:07:03 1142

原创 就地更新与复制并返回的区别(C++)

特性就地更新(In-place Update)复制并返回(Copy and Return)方法直接修改传入的数据结构创建并返回修改后的新数据结构内存使用更节省内存,因为不创建新实例占用更多内存,因为要创建数据结构的副本性能通常更高效,特别是处理大型数据结构时通常开销更大,特别是数据结构较大时可读性对于大数据结构或需要高性能的情况更为有用对于小数据结构或不要求高性能的情况,代码更清晰数据安全原始数据被直接修改原始数据保持不变适用场景大型数据结构、频繁调用的热点代码路径。

2024-09-11 12:47:07 489

原创 rust学习笔记

使用cargo:推荐用于管理 Rust 项目的整个生命周期。使用rustc:适用于编译单个 Rust 文件或简单的项目。选择工具时,根据你的需要和项目的复杂度来决定。

2024-09-09 13:24:15 862

原创 Python闭包示例代码

python闭包示例代码

2024-09-09 12:11:36 299

原创 Java中的强引用、软引用、弱引用和虚引用于JVM的垃圾回收机制

强引用:最常见的引用类型,不会被垃圾回收。软引用:在内存不足时会被回收,适用于缓存。弱引用:在垃圾回收时会被回收,适用于对内存敏感的数据结构,如 WeakHashMap。虚引用:不能直接访问对象内容,主要用于跟踪对象的垃圾回收情况。

2024-09-06 15:13:50 835

原创 Linux中的wc -l 和 ls -l 命令

此行表示一个名为的目录,它的权限为drwxr-xr-x(所有者拥有全部权限,同组用户和其他用户仅有读和执行权限)。这个目录的所有者是lindsey,所属组是staff,目录的大小为96字节,最后修改时间是9月5日 11:45。wc -l:统计文件或输入流中的行数。ls -l:以长格式列出目录内容,显示详细的文件和目录信息。

2024-09-05 12:42:28 2662

原创 Linux中的管道操作符|

管道操作符是命令行中的重要工具,用于将一个命令的输出作为另一个命令的输入,帮助用户简化复杂的操作流程。在日常操作中,管道操作符常被用来处理、过滤和格式化数据,是Unix/Linux命令行使用的核心技巧之一。

2024-09-05 12:37:59 878

原创 Linux中的grep命令

grep是一个强大的文本搜索工具,支持多种选项和正则表达式匹配,适用于在文件、输出和目录中快速查找特定文本模式。它常用于脚本编写、数据分析、日志文件检查等任务中。

2024-09-05 12:31:34 564

原创 Linux中的echo命令

echo命令是一个简单而强大的命令行工具,用于在终端中显示文本或者将文本输出重定向到文件。虽然它的功能看起来简单,但它有很多不同的用法和操作方式。以下是echo。

2024-09-05 12:18:40 1231

原创 如何使用Linux命令行创建文件

touch可以使用命令行中的touch或echo命令来创建一个名为main.rs的文件。

2024-09-05 11:44:50 1081

原创 Git命令入门

Git是一个分布式版本控制系统,广泛用于代码管理和协作开发。以下是学习Git的基本步骤和命令。

2024-08-09 13:38:22 535

原创 Python知识点复习

左闭右闭traceback库中的获取异常追踪的详细信息==比较的是对象的值(内容)。is比较的是对象的身份(是否是同一个对象)。这两个操作符在比较对象时的行为差异在实际编程中是非常重要的,尤其是当处理可变对象(如列表、字典等)和不可变对象(如整数、字符串、元组等)时。==比较的是对象的值(内容)。is比较的是对象的身份(是否是同一个对象)。这两个操作符在比较对象时的行为差异在实际编程中是非常重要的,尤其是当处理可变对象(如列表、字典等)和不可变对象(如整数、字符串、元组等)时。

2024-05-23 19:30:07 1079 1

原创 JAVA知识点复习

SQL 优化,JVM、DB,Tomcat 参数调优 >硬件性能优化 (内存升级、CPU 核心数增加、机械硬盘一> 固态硬盘等等)>业务逻辑优化/缓存 > 读写分离、集群等 > 分库分表要理解性能优化的必知法则,首先需要了解优化的不同层次和顺序,以及每种优化方法的具体内容和作用。

2024-05-22 21:40:21 931

原创 Python进行异步操作示例代码——引入协程的概念

将那些需要较长时间才能完成的操作通过异步方式进行处理,而不是同步方式。

2024-05-22 20:56:21 594

原创 Llama 3超级课堂作业笔记

Github 文档:https://github.com/SmartFlowAI/Llama3-TutorialB站视频:https://www.bilibili.com/video/BV1Kr421u71u/

2024-05-19 22:00:23 1018

原创 书生浦语训练营第四次课作业

拷贝internlm开发机内的环境。

2024-05-11 22:43:50 291

原创 书生浦语训练营第四次课笔记:XTuner 微调 LLM:1.8B、多模态、Agent

在不同量级的模型上,训练速度都是比LLaMa-Factory显著的更快与LLaMa-Factory相比,同样是LLaMa2 70B超大参数量的模型,在不同的数据长度下,Xtuner的表现也是比LLaMa-Factory更好XTunner对性能优化和显存优化做的更好!

2024-05-05 23:19:06 603

原创 书生浦语训练营二期第三次作业

检索过程中,茴香豆会将输入问题与两个列表中的问题在向量空间进行相似性比较,判断该问题是否应该回答,避免群聊过程中的问答泛滥。确定的回答的问题会利用基础模型提取关键词,在知识库中检索 top K 相似的 chunk,综合问题和检索到的 chunk 生成答案。提取知识库特征,创建向量数据库。数据库向量化的过程应用到了 LangChain 的相关模块,默认嵌入和重排序模型调用的网易 BCE 双语模型,如果没有在 config.ini 文件中指定本地模型路径,茴香豆将自动从 HuggingFace 拉取默认模型。

2024-04-08 04:27:05 838 1

原创 书生·浦语训练营二期第三次笔记-茴香豆:搭建你的 RAG 智能助理

复制完成后,在本地查看环境。结果如下所示。

2024-04-08 01:14:15 977 1

原创 根据项目的环境生成一份requirements.txt

导出了所有的包,不够简洁,如果我只需要导出我项目中使用的包的顶层依赖呢?

2024-04-05 22:01:33 573

原创 书生·浦语训练营二期第二次课后作业

使用 Hugging Face 官方提供的 huggingface-cli 命令行工具。以下内容将展示使用 huggingface_hub 下载模型中的部分文件。新建 python 文件,填入以下代码,运行即可。

2024-04-04 03:06:00 496

原创 书生·浦语训练营二期第二次笔记

查看该环境内已安装的包conda list。

2024-04-01 22:40:06 480

原创 书生·浦语训练营二期第一次笔记

先前的评测方案是做多选题,模型可能存在猜测的因素。而循环评测是对选项进行轮换,只有在能够答对所有轮换的选项后才能说明它的回答是正确的。我们能利用书生·浦语的框架,完整的开发属于自己的大模型应用。相对于第一期,InternLM2增加了Lagent和AgentLego。InternLM2:在Base基础上,在多个能力进行了强化,更优秀的基座模型。InternLM2-Chat:在Base基础上,再经过SFT和RLHF对齐后的对话模型。InternLM2-Base:高质量、强可塑性的基座模型。

2024-03-31 01:01:33 587

原创 Transformers for Machine Learning: A Deep Dive阅读笔记

给定一个实数向量Zz1z2zKZz1​z2​...zK​,其中KKKSoftmaxziezi∑j1KezjSoftmaxzi​∑j1K​ezj​ezi​​对于向量ZZZ中的每一个元素ziz_izi​,Softmax函数首先计算ezie^{z_i}ezi​,即ziz_izi​的指数。然后,将这个指数除以所有元素指数的总和。

2024-03-24 21:40:11 1368

原创 LeetCode Hot100 哈希相关题目(1、49、128)C++

【代码】LeetCode Hot100 哈希相关题目(1、49、128)C++

2024-03-20 16:24:41 308

原创 GitHub与Git命令使用笔记

这些步骤假设已经有一个本地项目和一个远程仓库,并且希望将远程仓库的内容合并到本地项目中。在未来,每当完成了一系列更改并希望将这些更改推送到GitHub时,只需要重复上面的。如果你现在不想提交这些更改,但希望稍后再处理,你可以使用贮藏(stash)功能将更改临时保存起来。如果你还没有本地分支对应于远程分支,你可以使用以下命令创建并切换到一个新的本地分支,这个分支会跟踪远程分支(将。如果已经有了一个本地分支并希望将远程分支的变更合并到这个本地分支中,确保现在就在那个本地分支上。如果只想添加特定文件,可以将。

2024-03-19 18:46:10 845

原创 使用Pytorch进行梯度下降的计算

输出:这段代码演示了使用PyTorch自动微分功能(autograd)来训练一个简单的线性回归模型。线性回归的目的是找到一个权重 (w),使得模型 (f(x) = w \times x) 能够尽可能准确地预测给定输入 (x) 对应的输出 (y)。这个例子中,我们希望模型学习到的权重使得 (f(x)) 接近真实函数 (f(x) = 2x)。初始化数据和权重:定义模型和损失函数:训练过程:自动梯度计算:PyTorch的自动微分引擎(autograd)使得计算梯度变得简单。通过在损失张量上调用 方法,PyTo

2024-03-10 19:58:31 497

原创 使用Numpy手工模拟梯度下降算法

通过不断重复这个过程(前向传播、损失计算、梯度计算、权重更新),www逐步被调整,以最小化模型的总损失。每次迭代,梯度告诉我们如何调整www以减少损失,学习率α\alphaα控制了这个调整的步长。随着迭代的进行,模型预测ypredypred​会逐渐接近真实值YYY,损失函数值会持续减小,直至收敛到最小值或达到学习的终止条件。

2024-03-10 19:16:28 1081

原创 Pytorch学习资料

Pytorch Tutorial: https://www.youtube.com/playlist?list=PLqnslRFeH2UrcDBWF5mfPGpqQDSta6VK4PyTorch for Deep Learning & Machine Learning – Full Course: https://www.youtube.com/watch?v=V_xro1bcAuAPyTorch for Deep Learning & Machine Learning – Full

2024-03-10 02:36:26 419

原创 PyTorch会在每次.backward()调用时会累积梯度的问题

这段代码展示了在PyTorch中如何计算梯度、梯度累积的特性以及清空梯度的重要性。在实际训练模型时,适时清空梯度是保证模型正确学习的关键步骤之一。

2024-03-10 02:17:20 1361

原创 Pytorch报错:grad can be implicitly created only for scalar outputs

创建一个v,作为链式法则中的Jacobine矩阵当执行时,实际上进行的操作是计算向量y相对于其输入张量x的向量-雅可比乘积(vector-Jacobian product, VJP)。这个过程可以更清晰地理解backward方法的工作原理以及v的作用。假设我们有向量函数yfx,其中x和y都是向量,x∈Rny∈Rm。雅可比矩阵J是f相对于x的导数的矩阵表示,其中每个元素Jij​∂xj​∂yi​​。

2024-03-09 23:07:19 1690

汇编语言实验环境(包括DOSBox,Debug,MASM,LINK等)

包括文件: debug.exe DOSBox0.74-3-win32-installer.exe edit.com exe2bin.exe LINK.EXE MASM.EXE 说明: 1、上述文件为进行王爽《汇编语言》实验所需的环境,0积分共享到网络供大家一起学习 2、该资源对应的博文:https://blog.csdn.net/qq_37397652/article/details/125285880 3、资源获取来源于网络,如有侵权请联系我,我会立即删除

2022-06-15

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除