Spring AI 使用的核心概念
Models 模型
AI 模型是设计用于处理和生成信息的算法,通常模仿人类认知功能。通过从大量数据集中学习模式和见解,这些模型可以做出预测、生成文本、图像或其他输出,增强各行业中的各种应用。

Prompts 提示词
提示语是引导 AI 模型产生特定输出的基于语言输入的基础。对于熟悉 ChatGPT 的人来说,提示语可能只是输入到对话框中并发送到 API 的文本。然而,它包含的远不止这些。
Prompt Templates 提示模板
创建有效的提示涉及建立请求的上下文,并用针对用户输入的具体值替换请求的部分。
RAG 检索增强生成
通过专业的相关数据搭建向量数据库,检索根据已有的知识进行检索输出。
函数调用Function calling
用自然语言去定义需要执行的函数流程,当模型提取当相关的自然语言描述,将开发的函数注册指定到大模型,大模型调用定义的函数给予输出反馈。
快速搭建
Spring AI支持Springboot3.4.X
1.创建springboot项目
此处省略
2.需要引入maven和依赖
repositories
<repositories>
<repository>
<id>spring-snapshots</id>
<name>Spring Snapshots</name>
<url>https://repo.spring.io/snapshot</url>
<releases>
<enabled>false</enabled>
</releases>
</repository>
<repository>
<name>Central Portal Snapshots</name>
<id>central-portal-snapshots</id>
<url>https://central.sonatype.com/repository/maven-snapshots/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
spring ai依赖
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-bom</artifactId>
<version>1.0.0-SNAPSHOT</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencies>
</dependencyManagement>
以ollama+deepseek为例
安装和运行参考以前发的
ollama依赖引入
<dependency>
<groupId>io.springboot.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
<version>1.0.0</version>
</dependency>
配置依赖和模型
Spring:
Application:
name: spring-ai-app
ai:
ollama:
base-url: http://127.0.0.1:11434
chat:
options:
model: deepseek-r1:8b
controller
@RestController
public class DsChatController {
@Autowired
OllamaChatClient ollamaChatClient;
@GetMapping("/dsChat")
public String sendMessage(@RequestParam(value = "msg", defaultValue = "Tell me a joke") String message) {
String response = ollamaChatClient.call(message);
return response;
}
}
测试

总结
SpringAI将LLM封装为类,开发者只要引入配置对应的类模型即可。