- 博客(393)
- 资源 (20)
- 收藏
- 关注
原创 MybatisPlus 基本操作 封装成公共类 从entity到controller
本文介绍了基于MyBatis-Plus的通用CRUD封装实现方案。采用分层设计,包括BaseEntity通用实体基类、BaseMapper通用Mapper接口、IBaseService通用Service接口及其实现类BaseServiceImpl。通过泛型约束保证类型安全,封装了增删改查、批量操作、分页查询等核心功能,业务层只需继承即可快速实现基础CRUD功能,减少重复代码。方案依赖MyBatis-Plus、Lombok等组件,提供标准化接口规范,适用于Spring Boot项目快速开发。
2025-12-10 16:45:47
419
原创 vLLM(vLLM.ai)K8S生产环境部署Qwen大模型
生产级vLLM推理服务架构摘要 本文详细介绍了基于Kubernetes的生产级vLLM推理服务架构方案。系统采用分层设计,包含WAF/CDN安全层、API网关层和Kubernetes集群内的vLLM推理服务。关键特性包括: GPU资源隔离:专用GPU节点池配合taint/toleration机制 安全架构:Istio实现服务间mTLS,Kong网关提供JWT认证和限流 弹性伸缩:基于KServe和HPA实现自动扩缩容,支持GPU利用率指标 模型部署:Docker镜像封装量化模型,支持不可变部署 全链路监控:
2025-12-10 08:31:56
936
原创 vLLM(vLLM.ai)生产环境部署大模型
vLLM是一款高性能大语言模型推理框架,提供单机API、多机分布式和K8s容器化三种生产部署方案。部署前需确保环境满足CUDA 11.8+/12.1+、Python 3.8~3.11、NVIDIA显卡等要求。核心部署模式包括:1)单机API服务,支持多卡并行;2)多机分布式部署,适用于70B+大模型;3)K8s容器化方案,便于生产环境管理。所有方案均兼容OpenAI API接口,支持量化模型优化显存占用,并提供详细的环境验证、模型准备和性能调优指南。
2025-12-10 08:18:49
923
原创 开源大模型生产环境部署方案(二) 基于Qwen
本文介绍了Qwen开源大模型在阿里云ModelScope生态下的生产环境部署方案。该方案采用Kubernetes集群和KServe推理服务,支持从Qwen-1.8B到Qwen-Max全系列模型的部署,重点优化了AWQ量化、vLLM推理适配和中文RAG流程。部署架构包含WAF防护、API网关、向量数据库和监控系统,针对Qwen模型的trust_remote_code、MoE支持和中文分词等特性进行了专门适配。方案已在金融、政务等高合规场景落地,提供完整的模型下载、容器化部署、资源调度和安全治理指南。
2025-12-05 10:26:30
1081
原创 开源大模型生产环境部署方案(一)
本文提出了一套开源大模型生产环境部署方案,涵盖从需求分析到运维保障的全流程。方案针对不同业务场景需求(如智能问答、内容生成等)提供模型选型建议,详细说明硬件资源配置和软件环境搭建要求。采用分层分布式架构设计,包括接入层、服务层、存储层和监控运维层,确保系统的高可用性和可扩展性。部署流程包含模型预处理、容器化打包、K8s集群部署等关键步骤,并提供了API接口封装示例。最后提出高可用保障和性能优化措施,确保系统稳定运行。该方案适用于Llama、Qwen等主流开源大模型的企业级部署需求。
2025-12-05 10:04:55
744
原创 MQTT协议详解
MQTT是一种轻量级物联网通信协议,采用发布/订阅模式,专为低带宽、高延迟网络环境设计。其核心特性包括最小2字节协议头、3级QoS保障、主题路由机制和双向通信能力。MQTT 5.0新增了会话过期、消息TTL、共享订阅等高级功能。典型架构包含客户端和代理服务器(Broker),通过主题层级和通配符实现灵活消息路由。安全机制包括TLS加密和多种认证方式。该协议广泛应用于智能家居、工业物联网等领域,主流实现包括EMQX、Mosquitto等Broker。最佳实践建议合理使用QoS级别、规范主题命名并强制启用加密传
2025-12-05 07:59:54
1249
原创 【AI】PgVector向量数据库详细部署安装应用
pgvector 是 PostgreSQL 的官方向量扩展,支持稠密向量存储和相似度搜索,适用于中小规模 RAG 应用。部署方式包括 Docker、云托管和源码编译,支持 IVFFlat 和 HNSW 索引优化查询性能。Python 可通过 psycopg、LangChain 或 Django 集成,生产环境需调整 work_mem 等参数。优势在于零新系统引入和 SQL 生态融合,但超大规模性能不如专用向量库。
2025-12-03 09:43:18
1087
原创 【AI】Weaviate向量数据库详细部署安装应用
📌 Weaviate 部署与集成指南摘要 核心功能: 混合搜索(向量+关键词) 语义图谱关系 模块化AI流程 动态schema和多租户支持 部署方案: 单机Docker(开发首选) 支持OpenAI API或本地Embedding 提供详细docker-compose配置 Kubernetes集群(生产环境) Helm Chart部署 支持高可用和自动扩缩容 安全特性: 多种认证方式(API Key/OIDC) 企业版支持RBAC和云备份 Python集成: 提供原生SDK操作示例 包含集合创建、数据插入
2025-12-03 09:33:40
1059
原创 【AI】Qdrant 向量数据库详细部署安装应用
Qdrant向量数据库部署与应用指南 摘要:本文详细介绍了Qdrant向量数据库的部署方案与应用方法。Qdrant采用Rust编写,支持RESTful API和gRPC协议,具备HNSW索引、元数据过滤、量化压缩等特性。部署方式包括:1)Docker单机部署(推荐开发使用);2)二进制安装;3)集群化部署(支持Raft共识)。安全方面强调必须配置API Key认证,并提供快照备份方案。应用集成部分展示了Python SDK的基本操作和LangChain的RAG集成示例。文章还涵盖了监控配置(Promethe
2025-12-03 09:23:52
1203
原创 AI RAG 向量数据库深度对比
本文对比了主流向量数据库在AI RAG场景下的性能与特性。从开源性、托管服务、混合搜索、延迟等维度分析了Pinecone、Weaviate、Qdrant、Milvus、Chroma和pgvector的优劣。结果显示:Pinecone适合快速上线的托管需求,Qdrant性能最优,Milvus适合超大规模,Weaviate支持混合搜索,pgvector是已有PostgreSQL用户的最佳选择,Chroma则适合原型开发。建议根据具体场景需求选择,如低延迟选Qdrant,已有PG用pgvector,混合搜索用We
2025-12-03 08:43:11
1305
原创 【Spring AI MCP】Spring AI MCP学习目录
MCP(Model Context Protocol)是AI工程领域新兴的开放协议标准,旨在规范大语言模型与外部工具、知识库等能力的交互方式。该协议由多家AI平台共同推动,包含客户端、服务端、安全机制等完整技术架构。Spring AI框架对MCP提供了全面支持,包括流式HTTP通信、无状态交互、注解开发等特性,并通过系列技术文章详细解析了协议实现细节,涵盖从基础原理到安全认证等关键内容。
2025-11-26 08:01:37
363
原创 【Spring AI MCP】十三、SpringAI MCP 特殊参数(Special Parameters)
MCP注解支持多种特殊参数类型,包括McpMeta、@McpProgressToken和McpSyncRequestContext等,这些参数由框架自动注入且不参与JSON模式生成。McpMeta用于访问请求元数据,@McpProgressToken用于追踪长时间运行操作进度,McpSyncRequestContext提供统一的请求上下文访问,支持日志记录、进度通知等功能。这些特殊参数类型为开发者提供了更灵活的请求处理能力,适用于工具、资源和提示词等多种场景。
2025-11-26 07:55:48
550
原创 【Spring AI MCP】十二、SpringAI MCP 服务端注解
Spring AI MCP注解模块为Java开发者提供了基于注解的MCP协议实现方案,包含服务器端和客户端两大部分。服务器端提供@McpTool、@McpResource、@McpPrompt和@McpComplete注解,简化了MCP功能开发;客户端则通过@McpLogging等注解处理各类通知。模块支持同步/异步请求上下文、特殊参数注入等高级特性,显著减少了样板代码,提高了开发效率。通过声明式编程模型,开发者可以更专注于业务逻辑而非底层协议实现。
2025-11-26 07:55:27
806
原创 【Spring AI MCP】十一、SpringAI MCP 客户端注解
Spring AI MCP注解模块为Java开发者提供了基于注解的声明式编程模型,简化MCP服务器和客户端的开发。该模块包含服务器端和客户端两大核心部分:服务器端提供@McpTool、@McpResource等注解实现工具注册和资源访问;客户端通过@McpLogging、@McpSampling等注解处理服务器通知。支持同步和异步处理方式,提供McpSyncRequestContext等特殊参数类型统一访问请求上下文,显著减少样板代码,提高开发效率。开发者可通过简洁的注解方式快速构建MCP应用,同时保持代码
2025-11-26 07:54:36
1024
原创 【Spring AI MCP】十、SpringAI MCP 安全(Security)
Spring AI MCP安全模块为开发者提供了基于OAuth 2.0和API密钥的安全解决方案,保护MCP服务器和客户端的通信安全。该社区驱动项目包含三大核心组件:服务器安全、客户端安全和授权服务器,支持细粒度的访问控制。开发者可以配置OAuth 2.0资源服务器,通过注解实现方法级安全控制,并从安全上下文中获取认证信息。该模块目前仅兼容Spring AI 1.1.x版本,属于社区项目,尚未获得官方认可。
2025-11-25 16:17:30
771
原创 【Spring AI MCP】九、 MCP 安全(Security)
MCP协议为LLM调用外部能力提供安全边界,采用能力(Capability)而非传统权限模型进行访问控制,确保LLM仅作为"建议者"而服务端作为"决策者"。其安全机制包括:1)工具注册即授权,能力与身份绑定;2)进程级隔离或语言级沙箱执行环境;3)三重授权检查(存在性、模式合规性、上下文策略);4)输入输出过滤与审计日志。核心原则是所有安全判断必须在可信的服务端完成,不依赖LLM输出,通过分层防御对抗提示注入、工具链污染等攻击。
2025-11-25 15:48:24
1153
原创 【Spring AI MCP】八、SpringAI MCP 服务端 Stateless Streamable-HTTP
摘要:本文介绍了无状态流式HTTP MCP服务器的设计与实现。该服务器采用请求间不维护会话状态的设计,适用于微服务架构和云原生环境。文章详细说明了基于Spring MVC和WebFlux的两种实现方式,包括依赖配置、核心属性设置以及四种主要能力(工具、资源、提示和补全)的实现方法。服务器支持通过注解声明式开发,提供同步/异步处理模式,并包含完整的配置参数说明。典型应用场景展示该方案能有效简化部署流程,提升系统扩展性。
2025-11-25 15:18:10
914
原创 【Spring AI MCP】七、SpringAI MCP 服务端 Streamable-HTTP
摘要 Spring AI引入了流式HTTP传输的MCP服务器实现,支持WebMVC和WebFlux两种方式。该服务器通过HTTP POST/GET请求处理多客户端连接,可动态通知工具、资源或提示变更。核心功能包括四种可独立配置的能力(工具、资源、提示、补全),支持变更通知和同步/异步规范自动转换。服务器提供注解式声明处理程序,可通过属性灵活配置各项参数,包括端点路径、保活间隔等。典型应用场景包括向语言模型暴露可调用工具、标准化资源访问和提示模板管理,支持通过Spring Bean自动生成各类规范。
2025-11-25 15:01:03
1050
原创 【Spring AI MCP】六、SpringAI MCP 服务端 STDIO & SSE
摘要: Spring AI的MCP服务器支持STDIO和SSE两种传输机制,提供多种启动器选择。STDIO方式适合命令行工具,无需Web依赖;SSE WebMVC基于Spring MVC实现HTTP传输;SSE WebFlux则采用反应式编程模型。服务器支持工具调用、资源访问和提示操作三大核心功能,具备变更通知、自动类型转换等特性。配置方面支持自定义端点路径、超时设置等参数,并通过注解简化开发。工具、资源和提示均可通过Spring Bean自动注册,支持同步/异步处理,为AI应用开发提供了灵活的服务器端解决
2025-11-25 14:25:28
898
原创 【Spring AI MCP】五、SpringAI MCP 服务端
Spring AI MCP服务器启动器为Spring Boot应用提供标准化的AI能力集成方案。该启动器支持多种协议类型(STDIO/SSE/Streamable-HTTP/Stateless)和传输机制,可自动配置MCP服务器组件,包括工具、资源和提示等核心功能。通过注解驱动开发模式(@McpTool/@McpResource等),开发者能快速定义AI交互接口,系统会自动扫描并注册相关bean。MCP服务器支持同步和异步两种操作模式,具备工具调用、RAG注入、多轮对话管理等核心能力,并能自动兼容不同协议版
2025-11-25 11:37:08
986
原创 【Spring AI MCP】四、MCP 服务端
MCP服务端是连接大语言模型与外部能力的智能调度中枢,负责解析MCP请求、协调工具调用与模型推理,并返回标准化响应。其核心功能包括解析MCP请求、路由到基础LLM、执行工具调用、注入检索结果(RAG)、管理多轮对话状态等。架构设计涵盖工具注册中心、向量数据库、多模态处理器和LLM路由器等模块。工作流程包括接收请求、转发LLM、处理响应、执行工具并回传结果。通过Python示例展示了工具注册与执行引擎的实现,以及基于FastAPI的服务端主逻辑。此外,还支持RAG集成和多模态处理等高级功能,实现智能化的请求调
2025-11-25 10:38:02
1172
原创 【Spring AI MCP】三、MCP 客户端
Spring AI MCP客户端启动器为Spring Boot应用提供模型上下文协议(MCP)的自动配置,支持多种传输协议和客户端类型。核心功能包括多实例管理、工具集成、自动序列化/反序列化、降级兼容等。提供标准(基于JDK HttpClient)和WebFlux两种启动器,支持STDIO/HTTP/SSE等多种传输方式。配置灵活,可通过YML文件定义服务器连接参数,包括命令执行、环境变量、URL端点等。该组件能与主流AI框架集成,自动处理工具调用流程,实现自然语言与函数执行的闭环交互。适用于需要复杂上下文
2025-11-25 10:21:45
446
原创 【Spring AI MCP】二、MCP 客户端
MCP客户端是遵循Model Context Protocol规范的应用程序/SDK,用于统一调用支持MCP的AI服务。它能自动处理工具调用、检索和多模态等功能,核心功能包括构建MCP请求、序列化/反序列化、工具调用响应处理和兼容传统模式。工作流程涉及构建请求、调用AI服务、执行本地工具并返回结果。目前生态包含社区实现和框架集成,如Python示例和Spring AI的Java实现。相比传统客户端,MCP客户端能自动处理复杂流程,统一多模型兼容性,是构建AI Agent的关键基础设施。建议优先采用支持MCP
2025-11-25 09:32:06
730
1
原创 【Spring AI MCP】一、MCP 原理详解
MCP(Model Context Protocol)是一种标准化的LLM与外部能力通信协议,类似于“AI的USB接口”。它通过统一的JSON结构(context字段)集成工具调用、知识检索、多模态输入等功能,解决传统方式中格式不兼容的问题。MCP支持跨平台兼容,即使底层LLM不原生支持,中间件也能自动降级处理。Spring AI通过专用启动器和注释全面支持MCP,开发者可轻松构建MCP客户端或服务端。目前由OpenRouter等推动,已成为事实标准,其核心价值在于标准化、解耦和扩展性,为LLM应用提供高效
2025-11-25 08:59:33
1277
原创 系统架构师-质量属性
系统架构设计中的质量属性是衡量系统非功能性需求的关键指标,主要包括可用性、性能、安全性、可修改性等核心要素。这些属性决定了系统的稳定性、响应速度、安全程度和可维护性等重要特性。在实际设计中,质量属性常存在冲突(如性能与安全性),需要根据业务需求进行权衡。识别质量属性可采用"质量属性场景"模型,通过刺激源、环境、响应等要素具体化需求。在架构设计各阶段,需结合业务优先级选择合适的技术方案,并通过测试验证质量目标的达成情况。
2025-09-04 18:15:56
872
原创 架构-亿级流量性能调优实践
本文系统介绍了性能调优的完整方法论与实践经验。从基础概念(性能指标、优化手段、检测工具)到具体技术实现(代码优化、设计模式、并发编程、JVM调优),再到高并发场景实战(订单处理、商品详情页构建、支付系统优化)和数据库调优(SQL优化、索引调优、分库分表)。重点涵盖了阿里巴巴、天猫等真实业务场景下的性能优化案例,如百万级交易系统JVM调优、32万笔/秒订单的FullGC问题解决等,形成了一套完整的性能优化知识体系。
2025-09-04 10:54:49
429
原创 thymeleaf 日期格式化显示
本文介绍Thymeleaf中日期格式化的5种方法:1)使用#dates.format()自定义格式;2)表单字段推荐th:name+th:value组合;3)提取日期组件;4)ISO标准格式输出;5)集合类型批量格式化。注意事项包括避免th:field与th:value混用、遵循SimpleDateFormat规范及处理时区问题。这些方法能有效解决页面展示与数据传递的日期格式需求。
2025-08-11 11:56:03
567
原创 Java 后端生成二维码代码
本文介绍了一种使用Java后端生成二维码并返回给前端的方法。首先在pom.xml中添加ZXing依赖,然后通过QRCodeWriter生成二维码图片字节数组,最后将字节数组转换为Base64编码字符串返回给前端。该方法支持自定义二维码尺寸和URL内容,并进行了异常处理。返回的Base64字符串可直接用于前端img标签的src属性显示二维码。
2025-08-11 08:18:32
546
原创 Nginx 信创版本源码升级 1.22.1 升级到1.28.0
本文详细介绍了在信创平台下将Nginx从1.22.1升级到1.28.0的完整步骤。主要内容包括:1)升级前的配置文件备份和编译参数记录;2)针对信创平台(UOS/麒麟)的依赖安装方法;3)新版本源码下载与编译配置;4)安装替换和重启验证流程;5)常见问题解决方案,特别针对信创平台的兼容性处理。该指南既保留了原有配置参数,又提供了国产化系统的适配建议,确保升级过程平稳可靠。
2025-07-24 11:44:23
642
原创 Postgres 增加向量支持
PGvector是PostgreSQL的开源扩展插件,专为高效处理高维向量数据设计,支持相似性搜索等AI应用场景。核心功能包括:支持多种向量数据类型(常规/稀疏向量),提供多种距离度量方式(欧氏/余弦/内积等)和索引类型(IVFFlat/HNSW),并完全兼容PostgreSQL原生功能。部署方式灵活,支持容器化部署(通过Docker安装PostgreSQL后编译安装扩展)和本地安装(需先安装PostgreSQL再编译PGvector)。两种部署方式最后均需通过CREATE EXTENSION命令启用插件,
2025-07-21 08:23:20
514
原创 Openstack Spine-Leaf网络
Spine-Leaf架构是现代数据中心的高效网络拓扑,采用两级全连接设计(Spine核心层和Leaf接入层),解决了传统三层网络的扩展性、延迟和带宽瓶颈问题。相比传统架构,它具有无阻塞带宽、水平扩展能力和更低延迟等优势,特别适合云计算、高性能计算等场景。关键技术包括Underlay/Overlay网络分离、动态路由协议(BGP/OSPF)和虚拟化支持。实际部署案例显示该架构能够支持大规模终端接入,避免广播风暴问题,成为现代数据中心的主流选择。
2025-07-07 10:29:47
1277
原创 Spring AI 源码
Spring AI:构建AI应用的集成框架 Spring AI是一个基于Spring生态系统的AI工程框架,其核心目标是简化企业级AI应用开发。该框架通过模块化设计实现了以下关键能力: 模型集成:提供统一接口支持语言模型、嵌入模型等多种AI能力,屏蔽不同API的底层差异 向量处理:包含专门的向量存储模块,支持20+向量数据库的标准化操作 RAG流程:通过检索增强生成模块实现动态知识整合,解决大模型的静态知识局限 开发工具:提供模板渲染、重试机制等辅助组件,提升开发效率 框架采用分层架构设计,从基础的通用组件
2025-07-02 09:59:12
1304
原创 Spring AI Agent
Spring AI 的 Agent 是一种基于大语言模型的智能代理系统,具有动态决策、模块化设计和多代理协作三大特性。其核心功能包括:1)实时分析任务并动态规划执行流程;2)通过工具调用集成外部服务;3)支持多代理协同工作。实现模式涵盖单一LLM优化、链式工作流和工具调用等,适用于从简单分类到复杂协作的不同场景。典型应用包括天气查询、电商订单处理等,通过注解即可快速注册工具服务。该系统采用标准化协议,支持20+主流模型,平衡了灵活性与执行效率。
2025-07-02 08:11:19
702
原创 Spring AI RAG
检索增强生成(RAG)技术解析与应用 本文系统介绍了检索增强生成(RAG)技术的核心原理与实现方法。该技术通过将外部知识库实时检索结果融入生成过程,有效解决了传统大模型的"知识冻结"问题。RAG采用ETL流程处理非结构化数据,核心步骤包括文档智能分块、向量编码、相似检索和生成增强。 Spring AI提供了模块化实现方案,包含检索模块(VectorStoreDocumentRetriever)和生成模块(QuestionAnswerAdvisor)。关键技术点涉及动态知识增强机制、语义连
2025-06-30 14:24:55
1079
原创 Spring AI MCP
摘要: MCP(模型上下文协议)是一个标准化协议,用于连接AI模型与数据源/工具,类似USB-C的统一接口作用。其Java实现包含三层架构(客户端/服务器层、会话层、传输层),支持同步/异步通信。Spring AI通过Boot Starter集成MCP,提供客户端(STDIO/HTTP SSE)和服务器(STDIO/WebMVC/WebFlux)启动器,支持多实例管理、自动初始化及与Spring AI工具框架的集成。配置灵活,可定制超时、根访问权限和事件处理,适用于构建智能体与复杂工作流,同时确保数据安全与
2025-06-10 18:06:27
1477
5
原创 Spring AI Tool Calling
摘要 Spring AI的Tool Calling功能允许AI模型调用外部工具增强能力,主要应用于信息检索(如查询天气API)和行动执行(如设置闹钟)。开发人员可通过定义工具接口、实现逻辑并注册为Spring组件来集成工具,支持声明式(@Tool注解)和编程式两种方式。模型会根据用户问题判断是否调用工具,将结果整合到最终响应中。该机制通过工具名称、描述和参数配置实现精确调用,有效扩展了AI应用的功能边界。
2025-06-04 18:22:29
1314
4
原创 Nginx 安全设置配置
本文介绍了如何在Nginx中配置安全头部信息以增强网站安全性。通过在/etc/nginx/conf.d/security_headers.conf文件中添加多种安全头部,包括XSS防护、内容类型限制、帧嵌入控制、下载选项限制等,并建议将这些配置包含在server块的location中。关键配置包括X-XSS-Protection、X-Frame-Options和HSTS(Strict-Transport-Security)等,可以有效防范跨站脚本攻击、点击劫持等安全威胁。参考文章链接提供了更详细的安全设置说
2025-06-04 17:26:32
419
原创 Nginx 安全设置问题
本文介绍了四种关键安全响应头的Nginx配置方案: X-XSS-Protection:建议设置为"1; mode=block"以启用XSS保护并阻止攻击页面渲染 X-Frame-Options:推荐"SAMEORIGIN"防止点击劫持攻击 X-Download-Options:配置"noopen"阻止IE自动打开下载文件 Strict-Transport-Security:强制HTTPS访问,建议包含subdomains和preload X-Per
2025-06-04 14:47:20
1706
原创 Spring AI Advisor机制
Spring AI Advisors 是 Spring AI 框架中用于增强 AI 交互的核心组件,采用责任链模式实现请求/响应拦截。主要功能包括:动态修改聊天请求/响应、通过 AdvisorContext 共享上下文数据、兼容多模型架构。典型应用场景涵盖对话记忆管理(MessageChatMemoryAdvisor)、日志记录(SimpleLoggerAdvisor)和提示词动态调整。该组件提供同步(CallAroundAdvisor)和流式(StreamAroundAdvisor)两种处理方案,开发者可
2025-06-03 14:48:36
1643
原创 vue发版html 生成打包到docker镜像进行发版
本文介绍了将Vue项目打包为Docker镜像的完整流程:1)通过npm run build生成dist静态文件;2)编写Dockerfile配置nginx容器;3)构建镜像并运行容器。还提供了高级配置选项,包括自定义nginx.conf解决路由问题、多环境管理等。文中包含具体示例文件结构、配置代码和运行命令,帮助开发者快速实现Vue应用的容器化部署。(149字)
2025-05-29 18:23:23
862
mfc 类库详细 VC good
2009-05-14
数据库编程 VC
2009-05-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅