Codeforces Round #418 (Div. 2) B. An express train to reveries
time limit per test:1 second
Sengoku still remembers the mysterious “colourful meteoroids” she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.
On that night, Sengoku constructed a permutation p1, p2, …, pn of integers from 1 to n inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with n meteorids, colours of which being integer sequences a1, a2, …, an and b1, b2, …, bn respectively. Meteoroids’ colours were also between 1 and n inclusive, and the two sequences were not identical, that is, at least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.
Well, she almost had it all — each of the sequences a and b matched exactly n - 1 elements in Sengoku’s permutation. In other words, there is exactly one i (1 ≤ i ≤ n) such that ai ≠ pi, and exactly one j (1 ≤ j ≤ n) such that bj ≠ pj.
For now, Sengoku is able to recover the actual colour sequences a and b through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.
Input
The first line of input contains a positive integer n (2 ≤ n ≤ 1 000) — the length of Sengoku’s permutation, being the length of both meteor outbursts at the same time.The second line contains n space-separated integers a1, a2, …, an (1 ≤ ai ≤ n) — the sequence of colours in the first meteor outburst.
The third line contains n space-separated integers b1, b2, …, bn (1 ≤ bi ≤ n) — the sequence of colours in the second meteor outburst. At least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.
Output
Output n space-separated integers p1, p2, …, pn, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.Input guarantees that such permutation exists
Examples
input
5
1 2 3 4 3
1 2 5 4 5
output
1 2 5 4 3
input
5
4 4 2 3 1
5 4 5 3 1
output
5 4 2 3 1
input
4
1 1 3 4
1 4 3 4
output
1 2 3 4
本题题意:
本题意思就是给你一个数 n ,给定 a, b两个序列,每个序列包含 n 个数。现在要你求一个序列c ,要求c序列与a 和b 序列有且仅有一个数不同。并且c 序列中的数是从1~n 的所有数,这样的数一定存在。
解题思路:
分两种情况来考虑。
1、a ,b 两个序列中仅有一个数不相同,那么就找出1`n中没有出现过的数填在数不同的位置就行啦!
2、a ,b 中有两个数不同,找不同位置对角线上的数,判断是否1~n重复就好。
代码如下:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
#include <map>
using namespace std;
int main()
{
int n,a[1005],b[1005];
while(scanf("%d",&n)!=EOF)
{
int c[1005],d[1005];
map<int,int>M;
for(int i=1; i<=n; i++)
scanf("%d",&a[i]);
for(int j=1; j<=n; j++)
scanf("%d",&b[j]);
int k=0;
for(int i=1; i<=n; i++)
{
if(a[i]==b[i])
{
c[i]=a[i];
M[a[i]]++;
}
else
{
d[k++]=i;
}
}
if(k==1)
{
int s;
for(int i=1; i<=n; i++)
{
if(M[i]==0)
s=i;
}
c[d[0]]=s;
}
else
{
int t1=d[0];
int t2=d[1];
if(M[a[t1]]==0&&M[b[t2]]==0)
{
c[t1]=a[t1];
c[t2]=b[t2];
}
else
{
c[t1]=b[t1];
c[t2]=a[t2];
}
}
for(int i=1; i<=n; i++)
{
if(i==1)
printf("%d ",c[i]);
else
printf("%d ",c[i]);
}
printf("\n");
}
return 0;
}