An express train to reveries

Codeforces Round #418 (Div. 2) B. An express train to reveries

time limit per test:1 second

  Sengoku still remembers the mysterious “colourful meteoroids” she discovered with Lala-chan when they were little. In particular, one of the nights impressed her deeply, giving her the illusion that all her fancies would be realized.

  On that night, Sengoku constructed a permutation p1, p2, …, pn of integers from 1 to n inclusive, with each integer representing a colour, wishing for the colours to see in the coming meteor outburst. Two incredible outbursts then arrived, each with n meteorids, colours of which being integer sequences a1, a2, …, an and b1, b2, …, bn respectively. Meteoroids’ colours were also between 1 and n inclusive, and the two sequences were not identical, that is, at least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

  Well, she almost had it all — each of the sequences a and b matched exactly n - 1 elements in Sengoku’s permutation. In other words, there is exactly one i (1 ≤ i ≤ n) such that ai ≠ pi, and exactly one j (1 ≤ j ≤ n) such that bj ≠ pj.

  For now, Sengoku is able to recover the actual colour sequences a and b through astronomical records, but her wishes have been long forgotten. You are to reconstruct any possible permutation Sengoku could have had on that night.

Input
  The first line of input contains a positive integer n (2 ≤ n ≤ 1 000) — the length of Sengoku’s permutation, being the length of both meteor outbursts at the same time.

  The second line contains n space-separated integers a1, a2, …, an (1 ≤ ai ≤ n) — the sequence of colours in the first meteor outburst.

  The third line contains n space-separated integers b1, b2, …, bn (1 ≤ bi ≤ n) — the sequence of colours in the second meteor outburst. At least one i (1 ≤ i ≤ n) exists, such that ai ≠ bi holds.

Output
  Output n space-separated integers p1, p2, …, pn, denoting a possible permutation Sengoku could have had. If there are more than one possible answer, output any one of them.

  Input guarantees that such permutation exists


Examples
input
5
1 2 3 4 3
1 2 5 4 5
output
1 2 5 4 3
input
5
4 4 2 3 1
5 4 5 3 1
output
5 4 2 3 1
input
4
1 1 3 4
1 4 3 4
output
1 2 3 4

本题题意:

  本题意思就是给你一个数 n ,给定 a, b两个序列,每个序列包含 n 个数。现在要你求一个序列c ,要求c序列与a 和b 序列有且仅有一个数不同。并且c 序列中的数是从1~n 的所有数,这样的数一定存在。

解题思路:

  分两种情况来考虑。
  1、a ,b 两个序列中仅有一个数不相同,那么就找出1`n中没有出现过的数填在数不同的位置就行啦!
  2、a ,b 中有两个数不同,找不同位置对角线上的数,判断是否1~n重复就好。

代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
#include <map>
using namespace std;
int main()
{
    int n,a[1005],b[1005];
    while(scanf("%d",&n)!=EOF)
    {
        int c[1005],d[1005];
        map<int,int>M;
        for(int i=1; i<=n; i++)
            scanf("%d",&a[i]);
        for(int j=1; j<=n; j++)
            scanf("%d",&b[j]);
        int k=0;
        for(int i=1; i<=n; i++)
        {
            if(a[i]==b[i])
            {
                c[i]=a[i];
                M[a[i]]++;
            }
            else
            {
                d[k++]=i;
            }
        }
            if(k==1)
            {
                int s;
                for(int i=1; i<=n; i++)
                {
                    if(M[i]==0)
                       s=i;
                }
                c[d[0]]=s;
            }
            else
            {
                int t1=d[0];
                int t2=d[1];
                if(M[a[t1]]==0&&M[b[t2]]==0)
                {
                    c[t1]=a[t1];
                    c[t2]=b[t2];
                }
                else
                {
                    c[t1]=b[t1];
                    c[t2]=a[t2];
                }
            }
            for(int i=1; i<=n; i++)
            {
                if(i==1)
                    printf("%d ",c[i]);
                else
                    printf("%d ",c[i]);
            }
            printf("\n");
    }
    return 0;
}
内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值