数据恢复
小白lite
深度学习小白,请大家多多指教!
展开
-
学习笔记1:矩阵恢复算法1——奇异值阈值算法(SVT)
承接低秩矩阵恢复模型笔记,记录第一个低秩矩阵恢复算法——奇异值阈值(Singular Value Thresholding, SVT),记录学习内容,内容非原创。1奇异值分解(Singular Value Decomposition,SVD)设X∈Rm×nX\in R_{m\times n}X∈Rm×n,定义X=UΣVTX=U\Sigma V^TX=UΣVT其中,U,V为正交矩阵,Σ\Sig...原创 2019-11-03 20:51:53 · 12098 阅读 · 13 评论 -
学习笔记1:应用泛函基础——常用范数
1范数把R2空间中向量长度的概念推广到更一般的线性空间中,可以得到更一般的具有长度的概念,需要满足下列公理:p范数以n维空间向量为例,x=(ξ1,ξ2,…,ξn)∈Rn,通常定义如下范数∣∣x∣∣p=(∑k=1n∣ξi∣p)1p1≤p<∞∣∣x∣∣∞=max1≤k≤n∣ξk∣p=∞||x||_p=(\sum_{k=1}^n |ξ_i|^p)^\frac{1}{p}\qquad1\le...原创 2019-10-24 19:42:48 · 1563 阅读 · 0 评论 -
学习笔记1:压缩传感与低秩矩阵理论
最近在做的研究生课题接触到了低秩矩阵恢复的理论与方法,在学习过程中有很多基础知识的欠缺,希望通过写博客的过程记录一些学习笔记。注:本博客中的理论主要参考自文献[^1] ,非原创内容。1.压缩传感1.1稀疏性对于以向量x0 ∈Rn 表示的信号,其稀疏性即指向量x0中非零元素的个数。数学表示即l0范数(零范数),||x0||:=|{i:xi ≠ 0}|。1.2采样定理经典的Nyquist-S...原创 2019-10-22 21:14:14 · 1327 阅读 · 0 评论