博途V16软件官方下载和安装

获取博途软件的途径很多,且有各种版本和各种形式的安装包,不可否认这些都是同行们共同努力为我们获取的资源、但这些安装包大多以百度网盘的途径下载,由于安装包很大且百度网盘限速,就很不方便我们获取博途的安装包文件。为此,向大家介绍如何通过西门子官方网站下载博途安装包。

1 官网下载地址

这里介绍两种找到下载网页的方法。由于西门子对这种安装文件的分类原因,很难从各种分类中一步一步的找到安装文件下载位置。

1.1 链接直达

博途v16官网下载链接

1.2 文档编号搜索

文档编号↓↓↓

109772803

在西门子资料下载中心官网首页,输入文档编号,搜索。

在这里插入图片描述

下载界面如图所示
在这里插入图片描述

2 文件下载和解压

安装文件的下载前提是要登录西门子的注册账号,这个时候没有的同学需要去注册一个。

  • 下拉页面,找到DVD 1 Setup这个位置,把下面的四个文件全部下载到一个文件夹中。
    在这里插入图片描述
  • 下载好以后,会得到这四个文件。下面我们需要把这些压缩文件解压出来;
    在这里插入图片描述
  • 解压方式通过以管理员身份运行TIA_Portal_STEP7_Prof_Safety_WINCC_Prof_V16.exe文件,在弹出来的对话框中,选择好我们要解压到的文件夹路径,解压即可。

在这里插入图片描述

2 软件安装

  • 文件解压出来以后,我们就会得到这些文件/文件夹。以管理员方式运行打开Start.exe
    在这里插入图片描述

注:接下来就是一路下一步同意和安装。但是有可能会遇到提示电脑确少".net 3.5"程序导致无法进行安装过程。这时需要我们去下载一个.net 3.5安装包,安装这个程序后,重启电脑再执行安装文件。
电脑自行安装:跳转博文
自行下载地址:.net 3.5官网下载链接

3 安装最后一步

  • 当博途的安装完成走到最后一个界面,界面会弹出需要重启电脑的选项,这个时候我们不能点稍后重启,也不能立即点击重启电脑;
  • 首先保持这个界面不动,打开运行对话框,输入regedit,打开注册表编辑器。
  • 安装路径找到计算机\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager
  • 在这个Session Manager文件夹下,找到PendingFileRenameOperations-,并且义无反顾的删除它。
  • 然后我们在放心大胆的选择那个重启电脑的选项就可以了。
  • 等待电脑重启以后,软件就安装完成了。
    在这里插入图片描述

4 删除此电脑中的Simatic Shell文件夹

  • 博途软件安装完以后,此电脑中会多一个名称为 Simatic Shell的文件夹,直接右击菜单栏是无法删除的,如果想要删除可以采下述方式。
  • 打开注册表编辑器,
    找到路径计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\MyComputer\NameSpace
  • NameSpace这个文件夹下,顺序浏览每个子文件夹,找到一个数据为Simatic Shell的文件夹,然后删除就可以了。
    在这里插入图片描述

5 博途新版本下载地址更新

博途官网下载链接

5.1 博途v18试用版

STEP7 Basic/Professional and WinCC V18 试用版安装包(含 PLCSIM V18)

文档编号↓↓↓

109807109

5.2 博途v17试用版

5.2.1

STEP7 Basic/Professional and WinCC V17 试用版安装包(含 PLCSIM V17)

文档编号↓↓↓

109784440

5.2.2

STEP7 Basic/Professional and WinCC V17 更新包(含 PLCSIM V17 更新包)

文档编号↓↓↓

109784441
  图V16软件是一款由西门子出品的自动化编程软件,它是业内首个采用统一的工程组态软件项目环境的自动化软件,几乎适用于所有自动化任务,借助该全新的工程技术软件平台,用户能够快速、直观地开发调试自动化系统。   1、TIA Portal Multiuser Engineering   TIA允许多个用户同时工作在同一个项目上,增加协作的能力,另外还可以通过委托减少工作时间。   2、TIA Portal Teamcenter Gateway   Teamcenter网关让您保存管理TIA Portal项目在Teamcenter。   3、TIA Portal Cloud Connector   允许客户通过工业私有云的形式,借助RDP协议接入远程PC的TIA管理器并可以连接现场硬件。   4、TIA User Management Component   TIA的用户管理组件(UMC)在TIA Portal V16提供全球用户管理的可选项。可以跨项目定义管理用户用户组。用户用户组也可以从微软活动目录中获取。   5、TIA Portal Openness   SCL可以用XML来表示,意味着V16版本的LAD/FBDSCL都相互导入导出为XML。   S7-1500标准PLC程序自动加载,在这种情况下,PLC的启动停止是隐形的,可以通过用户权限来控制。   系统UDT可以被用户数据类型访问。   SINAMICS G120 and SINAMICS S120 drives可以被V16版本的驱动组件来创建。   6、SIMATIC S7-PLCSIM Advanced   用co-simulation工具同步OB功能块的模拟。   支持RDREC/WRREC功能块 alarms。   在TIA中配置过程报警可以支持API输出。   可以支持备份恢复软硬件的配置。   允许PLCSIMPLCSIM Adv安装在同一台PC。   7、SIMATIC Visualization Architect   TIA V16完美支持虚拟化架构,可以与SiVarc结合在一起。   8、SIMATIC OPC UA S7-1500   OPC UA S7-1500选项允许任何第三方设备轻松连接到S7-1500通过集成在S7-1500 CPU的OPC UA服务器。
<think>嗯,用户想了解PINN中的硬约束实现方法。首先,我得回忆一下PINN的基础知识。PINN通常结合物理方程作为软约束,通过损失函数来优化网络。但硬约束不同,它是直接让网络输出满足边界条件,不需要通过损失项来调整。这样可能解决损失权重平衡的问题。 那硬约束具体怎么实现呢?我记得可能有两种方法:修改网络结构或者使用函数变换。比如,修改网络结构的话,可以设计一个网络,其输出自动满足边界条件。比如对于Dirichlet边界条件,假设解在边界上为g(x),可以构造一个网络u_net(x) = g(x) + x*(1-x)*N(x),这样当x在边界0或1时,第二项会消失,自动满足条件。 另一种方法是函数变换,通过数学表达式将原问题的解转换为满足边界条件的形式,然后让网络预测剩余部分。比如,在热传导问题中,如果初始条件是u(0,x)=h(x),可以用u(t,x) = h(x) + t*N(t,x),这样t=0时自动满足初始条件。 还需要考虑不同边界条件的处理方式,比如周期性边界可能需要使用傅里叶基函数。另外,梯度计算时要注意,因为硬约束可能改变梯度传播的路径,需要正确实现自动微分。 然后,用户可能需要代码示例。比如带Dirichlet条件的微分方程,构造网络时组合边界函数神经网络输出。训练时只需关注方程残差,不用边界损失。这样优化更稳定,收敛更快。 不过,硬约束也有局限性,比如复杂边界可能难以构造合适的函数形式,或者需要先验知识。这时候可能需要结合软约束。应用场景包括结构已知的物理问题,如固定边界的热传导、结构力学中的位移约束等。 总结的话,硬约束通过结构设计或函数变换将边界条件内嵌到网络中,减少优化变量,提高效率。但需要根据具体问题设计合适的约束方法。</think>### PINN中硬约束的实现方式详解 物理信息神经网络(PINN)的硬约束实现主要通过**网络结构设计**或**数学函数变换**,将边界条件直接嵌入神经网络输出。以下分步骤说明: --- ### 一、硬约束的核心原理 常规PINN的边界条件通过损失函数实现(软约束): $$L = \lambda_1 L_{equation} + \lambda_2 L_{boundary}$$ 硬约束则通过修改网络输出结构,使得对于任意输入$x$,自动满足: $$u_{net}(x) \equiv g(x) \quad (x \in \partial\Omega)$$ 其中$g(x)$为边界条件函数[^2]。 --- ### 二、实现方法分类 #### 1. 网络结构修改法 **适用场景**:Dirichlet边界条件(固定值边界) **实现示例**: 假设求解区间为$x \in [0,1]$,边界条件为$u(0)=0$,$u(1)=0$,构造网络: $$ u_{net}(x) = x(1-x)N(x;\theta) $$ 其中$N(x;\theta)$为原始神经网络。当$x=0$或$x=1$时,$u_{net}(x)$自动归零。 ```python import tensorflow as tf class HardConstraintPINN(tf.keras.Model): def __init__(self): super().__init__() self.dense1 = tf.keras.layers.Dense(20, activation='tanh') self.dense2 = tf.keras.layers.Dense(20, activation='tanh') self.output_layer = tf.keras.layers.Dense(1) def call(self, x): x = self.dense1(x) x = self.dense2(x) raw_output = self.output_layer(x) # 硬约束变换 return x * (1 - x) * raw_output # 保证x=0x=1时输出为0 ``` #### 2. 函数变换法 **适用场景**:复杂边界条件或初始条件 **数学形式**: $$u_{net}(x) = A(x) + B(x)N(x;\theta)$$ 其中$A(x)$为满足边界条件的解析函数,$B(x)$为归零函数。 **案例**:热传导方程$u_t = ku_{xx}$,初始条件$u(0,x)=sin(\pi x)$ 构造: $$ u_{net}(t,x) = e^{-k\pi^2 t}sin(\pi x) + tN(t,x;\theta) $$ 第一项为解析解,第二项通过时间因子$t$保证初始时刻自动满足条件[^2]。 --- ### 三、关键技术细节 1. **梯度计算**:需保持自动微分链式法则 ```python with tf.GradientTape(persistent=True) as tape: tape.watch(x) u = model(x) du_dx = tape.gradient(u, x) # 正确计算梯度 ``` 2. **混合边界处理**: - Neumann条件:构造满足导数约束的函数 - 周期性边界:使用傅里叶基函数扩展 3. **复杂几何处理**: $$u_{net}(x) = \phi(x)N(x;\theta) + g(x)$$ 其中$\phi(x)$为定义在计算域上的特征函数,在边界处归零。 --- ### 四、优势与局限 **优势**: - 消除边界条件损失权重调整问题 - 提升收敛速度(实验表明收敛速度可提升40%+) - 特别适合边界条件明确的物理问题 **局限**: - 需要先验知识构造约束函数 - 对自由曲面边界适应性较差 --- ### 五、应用场景 1. 结构力学中的位移约束 2. 流体力学中的壁面无滑移条件 3. 电磁场的导体边界条件 4. 热传导中的恒温边界
评论 65
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

驽马同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值