Pytorch中常见的transforms用法

一、Pytorch中transforms介绍

transforms是torchvision中的一个模块(torchvision是Pytorch的计算机视觉工具包),该模块定义了很多用于图像预处理的类,如归一化(Normalize类),尺寸变化(Resize类),转换为tensor格式(ToTensor类),通过实例化该工具类,可以方便地对图像进行各种变换操作。

二、Pytorch中transforms使用

导入模块

from torchvision import transforms

本文只举例几个常见的Pytorch中transforms使用方法,详细所有函数说明和用法可以鼠标移动到导入模块的transforms代码上,按住Ctrl+鼠标左键单击查看源码,最终的transforms工具为transforms.py文件,里面定义了各种图像与处理的类。
在这里插入图片描述

也可以通过在transforms.py文件中按Alt+7,以结构树的形式查看完整预处理类,单击左侧类名即可查看定义和说明
在这里插入图片描述

1、transforms.ToTensor()

transforms.ToTensor():将PIL图像(Image.open)或者ndarray图像(cv2.imread)转换为tensor.
在这里插入图片描述

示例

import cv2
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms


writer = SummaryWriter("logs")

img = cv2.imread("./data/train/ants/0013035.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # cv2读入图像为BGR,转换成RGB

# transforms使用
trans_tensor = transforms.ToTensor()  # ToTensor类,实例化一个ToTensor工具
tensor_img = trans_tensor(img)

writer.add_image("ants_img", tensor_img, 1)

writer.close()

运行上方代码成功后,项目目录会创建logs文件夹,并将结果保存在该logs目录下。
查看:打开项目Terminal,通过tensorboard 可视化进行查看,执行tensorboard --logdir=logs,运行成功如下
在这里插入图片描述

单击蓝色链接即可查看结果如下
在这里插入图片描述

2、transforms.Normalize()

transforms.Normalize():用均值和标准差归一化张量(tensor)图像
在这里插入图片描述

示例

import cv2
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms


writer = SummaryWriter("logs")

img = cv2.imread("./data/train/ants/0013035.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # cv2读入图像为BGR,转换成RGB

# transforms使用
trans_tensor = transforms.ToTensor()  # ToTensor类,实例化一个ToTensor工具
tensor_img = trans_tensor(img)

trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])  # 归一化
norm_img = trans_norm(tensor_img)

writer.add_image("ants_img", norm_img, 2)

writer.close()

查看:如上打开项目Terminal,通过tensorboard 可视化进行查看,进入之前的链接刷新 或 执行tensorboard --logdir=logs后,单击蓝色链接查看结果如下
在这里插入图片描述

3、transforms.Resize()

transforms.Resize():将输入图像的大小调整为给定的大小(高宽),参数值可以是序列 如(512, 512)或 int(512),图像可以是PIL图像或torch张量,shape格式为[…, H, W]
在这里插入图片描述
示例

import cv2
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms


writer = SummaryWriter("logs")

img = cv2.imread("./data/train/ants/0013035.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # cv2读入图像为BGR,转换成RGB

# transforms使用
trans_tensor = transforms.ToTensor()  # ToTensor类,实例化一个ToTensor工具
tensor_img = trans_tensor(img)

trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])  # 归一化
norm_img = trans_norm(tensor_img)

print(norm_img.shape)
trans_resize = transforms.Resize((512, 512))  # 改变尺寸为(512, 512)
resize_img = trans_resize(norm_img)
print(resize_img.shape)

writer.add_image("ants_img", resize_img, 3)

writer.close()

控制台输出如下,尺寸高宽变为了(512, 512)
在这里插入图片描述

查看
在这里插入图片描述

4、transforms.Compose()

transforms.Compose():将多个变换组合在一起
在这里插入图片描述
示例

import cv2
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms


writer = SummaryWriter("logs")

img = cv2.imread("./data/train/ants/0013035.jpg")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # cv2读入图像为BGR,转换成RGB

# transforms使用
trans_tensor = transforms.ToTensor()  # ToTensor类,实例化一个ToTensor工具
tensor_img = trans_tensor(img)

trans_norm = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])  # 归一化
norm_img = trans_norm(tensor_img)

print(norm_img.shape)
trans_resize = transforms.Resize((512, 512))
resize_img = trans_resize(norm_img)
print(resize_img.shape)
# transforms.Compose()
trans_compose = transforms.Compose([transforms.ToTensor(),
                                    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
                                    transforms.Resize(400)])  # 只传如一个值时,图像的较小边resize到该尺寸,另一边按这个比例缩放
compose_img = trans_compose(img)
print(compose_img.shape)

writer.add_image("ants_img", compose_img, 4)

writer.close()

运行后经过transforms.Compose()一系列操作后,图像尺寸变为了(400, 600)
在这里插入图片描述

查看
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值