三世
码龄16年
  • 445,604
    被访问
  • 302
    原创
  • 8,993
    排名
  • 142
    粉丝
关注
提问 私信
  • 加入CSDN时间: 2006-06-27
博客简介:

qimo601的专栏

博客描述:
欲宇仙炅
查看详细资料
  • 4
    领奖
    总分 750 当月 28
个人成就
  • 获得211次点赞
  • 内容获得71次评论
  • 获得1,186次收藏
创作历程
  • 12篇
    2022年
  • 49篇
    2021年
  • 41篇
    2020年
  • 22篇
    2019年
  • 17篇
    2018年
  • 2篇
    2016年
  • 215篇
    2012年
  • 75篇
    2011年
  • 30篇
    2010年
  • 13篇
    2009年
成就勋章
TA的专栏
  • Python
    37篇
  • Qt
    124篇
  • C/C++
    64篇
  • 技术总结
    62篇
  • 图像处理
    29篇
  • matlab
    11篇
  • Pytorch
    59篇
  • java
    1篇
  • web前台技术
    10篇
  • 数据库
    17篇
  • 书籍分享
    9篇
  • 网络
    7篇
  • C#
    2篇
  • 项目管理
    2篇
  • 操作系统
    5篇
  • DCMTK
    33篇
兴趣领域 设置
  • 人工智能
    深度学习pytorch图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Pytorch:visdom介绍

一、介绍在深度学习领域,模型训练是一个必须的过程,因此常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等。在Tensorflow中,最常使用的工具非Tensorboard莫属;在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom。visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好。Visdom中有两个重要概念:env:环境。不同环境的可视化结果相互隔离,互不影响,在
原创
发布博客 2022.04.14 ·
76 阅读 ·
0 点赞 ·
0 评论

pytorch中model.train(),model.eval() 和 torch.no_grad()的区别

pytorch中model.train(),model.eval() 和 torch.no_grad()的区别
转载
发布博客 2022.04.13 ·
89 阅读 ·
1 点赞 ·
0 评论

Python: sorted() 函数

描述sorted() 函数对所有可迭代的对象进行排序操作。sort 与 sorted 区别:sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作。list 的 sort 方法返回的是对已经存在的列表进行操作,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。示例:>>>sorted([5,2,3,1,4])[1,2,3,4,5]>>>a=[5...
转载
发布博客 2022.04.07 ·
26 阅读 ·
0 点赞 ·
0 评论

python:__init__.py和from...import的用法总结

一、__init__.py在Python工程里,当python检测到一个目录下存在__init__.py文件时,python就会把它当成一个模块(module)。Module跟C++的命名空间和Java的Package的概念很像,都是为了科学地组织化工程,管理命名空间。__init__.py可以是一个空文件,也可以有非常丰富的内容。本文将举一个非常简单的例子,来介绍__init__.py的用法;在本文的最后,我将会再简单介绍__init__.py的设计理念。1、一个普通的四则运算模块在不利用
原创
发布博客 2022.04.01 ·
114 阅读 ·
0 点赞 ·
0 评论

pytorch梯度的计算过程

1、基础知识:与numpy中的基本操作相似, pytorch 的作用是引入GPU加快运算, 增加图形界面, 适合大数据运算, 尤其是deep learning gradient 梯度类似于求导, 找到梯度下降的最佳路径。 tensor 除了可以进行线性代数运算, 还可以求梯度 tensor在pytorch里面是一个n维数组。我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度。在pytorch中一般叫做dynamic computation g...
原创
发布博客 2022.03.30 ·
1619 阅读 ·
1 点赞 ·
0 评论

python指定Gpu

PyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他GPU。有如下两种方法来指定需要使用的GPU。1. 类似tensorflow指定GPU的方式,使用CUDA_VISIBLE_DEVICES。1.1 直接终端中设定:CUDA_VISIBLE_DEVICES=1 python my_script.py1.2 python代码中设定:import osos.environ["CUDA_VISIBLE_DEVICES"] = "2"见网址:(原)
原创
发布博客 2022.03.29 ·
2027 阅读 ·
0 点赞 ·
0 评论

Pytorch:torchvision包-总结

TORCHVISION官网地址:torchvision — Torchvision 0.12 documentation计算机视觉是深度学习中最重要的一类应用,为了方便研究者使用,PyTorch团队专门开发了一个视觉工具包torchvion,这个包独立于PyTorch,需通过pip instal torchvision安装。在之前的例子中我们已经见识到了它的部分功能,这里再做一个系统性的介绍。torchvision它是一个视觉工具包,提供了很多视觉图像处理的工具,主要包含三部分:datasets..
翻译
发布博客 2022.03.25 ·
113 阅读 ·
0 点赞 ·
0 评论

Pytorch:Dataset总结

1、TORCH.UTILS.DATA官网地址:torch.utils.data — PyTorch 1.11.0 documentation在PyTorch中,数据加载可通过自定义的数据集对象。数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset,并实现两个Python魔法方法:__getitem__:返回一条数据,或一个样本。obj[index]等价于obj.__getitem__(index) __len__:返回样本的数量。len(obj)等价于obj.__len..
原创
发布博客 2022.03.24 ·
123 阅读 ·
0 点赞 ·
0 评论

python:filter用法

filter用法
原创
发布博客 2022.03.21 ·
72 阅读 ·
0 点赞 ·
0 评论

lambda用法

lambda用法
转载
发布博客 2022.03.21 ·
24 阅读 ·
0 点赞 ·
0 评论

优化器:torch.optim

优化器:torch.optim
转载
发布博客 2022.01.16 ·
146 阅读 ·
0 点赞 ·
0 评论

总结2-深度学习网络搭建学习

总结2-深度学习网络搭建学习
原创
发布博客 2022.01.14 ·
401 阅读 ·
0 点赞 ·
0 评论

VS2017 QT/C++ 调用python函数传图像

C++调用python,传递图像数组。
原创
发布博客 2021.12.20 ·
3155 阅读 ·
0 点赞 ·
0 评论

总结1-深度学习-基础知识学习

【小记】下采样和池化的区别:关于池化的神解释 深度学习VGG模型核心拆解,AlexNet和VGGNet,看到这,让我不由得先去看看CNN网络。 CNN(卷积神经网络)入门
原创
发布博客 2021.11.12 ·
42 阅读 ·
0 点赞 ·
0 评论

Qt5.12安装错误提示:C:\Qt5.12.11\vcredist\vcredist_msvc2019_x86.exe /norestart /q

错误1:Error during installation process(qt.tools.qtcreator):Error while extracting archive "installer://qt.tools.qtcreator/4.15.0-0qtcreator.7z":cannot open file "C:\Qt5.12.11\Tools\QtCreator\bin\d3dcompiler_47.dll"for writing:拒绝访问。错误2:Error during...
转载
发布博客 2021.09.09 ·
708 阅读 ·
0 点赞 ·
1 评论

ZZ_MODIFIED_GEEBINF 不可用

链接:https://cnzhx.net/bbs/index.php?topic=709.msg1540模板已经复制到style文件夹中,但是提示“本文档中指定的输出样式ZZ_MODIFIED_GEEBINF 在样式文件夹中不可用” 请问是什么原因?怎么解决?答案:这似乎是 EndNote 9 和 Windows 10 之间的一个小问题。可以试试下面的解决方法,1)关闭 Office;2)双击下载的 ZZ_MODIFIED_GEEBINF.ens,让默认的 EndNote 样式编辑器打开它,然后
转载
发布博客 2021.02.25 ·
1253 阅读 ·
4 点赞 ·
1 评论

池化层理解

参考网址:https://www.zhihu.com/question/36686900/answer/130890492https://www.cnblogs.com/skyfsm/p/6790245.html池化层夹在连续的卷积层中间, 用于压缩数据和参数的量,减小过拟合。简而言之,如果输入是图像的话,那么池化层的最主要作用就是压缩图像。下采样层也叫池化层,其具体操作与卷积层的操作基本相同,只不过下采样的卷积核为只取对应位置的最大值、平均值等(最大池化、平均池化),即矩阵之间的运算规律
转载
发布博客 2021.02.07 ·
472 阅读 ·
0 点赞 ·
0 评论

卷积神经网络(CNN)中,卷积层、激活函数、池化层、全链接层术语解析

本文内容转自https://www.cnblogs.com/zf-blog/p/6075286.html和https://www.cnblogs.com/rgvb178/p/6055213.html整理如下:(1)卷积层:用它来进行特征提取,如下:输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图是用了两个filte
转载
发布博客 2021.02.07 ·
296 阅读 ·
0 点赞 ·
0 评论

神经网络:全连接层

全连接层:全连接层一般会放在网络的最后,作用是用来综合所有信息。对于cnn它提取特征的范围是全图的,直接把图像降维成一堆序列。卷积层是一种局部连接,它所能提取的特征的范围,取决于卷积核的感受野,当卷积核感受野覆盖到全图的时候,它的作用就和全连接层类似了。(所以用和特征图尺寸一样大小的卷积核做卷积,提取全图范围特征,和接全连接层,计算过程是等效的,输入输出,参数量完全一样)全连接之所以失宠:有人说是参数量大的原因。其实如果特征图压缩的足够小再做全连接,参数量和计算量也是不算大...
转载
发布博客 2021.02.06 ·
7191 阅读 ·
6 点赞 ·
0 评论

Python中if-else语句的多种写法

初学Python在看程序时发现python中if-else的多种写法,故对其进行分析。以下为网络内容:a,b,c=1,2,31.常规ifa>b:c=aelse:c=b2.表达式c=aifa>belseb3.二维列表c=[b,a][a>b]4.传说是源自某个黑客c=(a>band[a]or[b])[0]个人分析:1、2为程序的基本语法不讨论3:首...
转载
发布博客 2021.01.30 ·
1026 阅读 ·
0 点赞 ·
0 评论
加载更多