自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

qimo601的专栏

欲宇仙炅

  • 博客(502)
  • 资源 (6)
  • 问答 (2)
  • 收藏
  • 关注

原创 Anaconda新建python版本

由于新版本的Anaconda自带的python是3.11的,国内镜像一些库,不好下载。特更新为常见的python3.9。

2024-07-06 18:32:29 333

原创 无法下载cuda

用360、chrome、Edge浏览器都打不开下载页面,有的人说后缀com改成cn,都不行。知乎上说是网络问题,电信换成换成移动/联通的网络会好点。,为了节省流量,我直接下载cuda的exe(network)版本,然后台式机上再在线安装。

2024-07-06 18:07:50 822

翻译 torchinfo:查看网络各层输出大小,参数大小

torchinfo,可用来可视化我们的网络模型,查看每层的输出大小和参数大小。

2024-03-05 17:27:13 450

原创 修改Pycharm中git的代码提交者信息

问题1、之前pycharm中安装git,首次提交代码,默认代码提交者信息为Administrator。如何后续更改呢?答案:我是没找到界面修改的地方,只有在git配置文件“C:\Users\Administrator\.gitconfig”里修改。

2024-02-27 10:57:24 1884

原创 总结:图像生成网络

那么简笔画猫转成真猫到底是一个什么原理腻,可以这样理解:你可以获取很多真猫的图片,用opencv的边缘提取,把每一张图片的边缘都给提取出来,构建一个像素到像素的映射数据集,也就是数据集包含两类图片,一类是边缘轮廓简笔画,另一类是真猫的图片,它们俩是一一对应的关系,所以pix2pix解决的是一个像素配对的图像转译问题,那么我们上次介绍的cyclegan呢解决的是一个非配对的图像转译问题。我们的目的是,既要让输出的图片真实,也要让输出的图片符合条件c的描述。下面右图是侧面的火车,它们也统统都是正确的火车。

2024-02-06 14:16:16 1193

原创 Win10 + CUDA12.3+pytorch手动安装-3.0版本

Win10 专业 x64Python 3.7.7(通过Anaconda软件自带安装)【这个版本自带的python是3.11】官方是Pytorch在线指令安装,,开发工具,社区免费版,下载后,自行一路默认安装。

2023-11-27 16:10:37 7131 1

原创 python常用代码总结2

(2)列表追加多个相同的元素,比如追加10个0。(4)列表中追加一个二维列表的一行或一列。(1)列表追加多个元素,比如追加0-9。1、列表的常规追加元素、追加列表操作。(5)列表中可以追加不同长度的列表。(3列表追加一个已有列表。

2022-12-01 00:11:29 1278 1

原创 Python字典的用法总结

python中字典的常用方法总结

2022-11-29 13:35:43 3119

转载 Jupyter Notebook局域网访问服务器(win10)

windows10服务器配置局域网jupyter Notebook的远程访问环境

2022-11-29 10:03:34 3994

原创 torch.copy_()函数介绍

原来权重的存储指针会指向新得到的权重张量的存储区域;而使用 .copy_() 的话,仅仅是改变原来权重的值,存储区域则不发生改变。copy_()有利于降低运算。

2022-11-24 15:19:37 4941

原创 torch.as_tensor()、torch.Tensor() 、 torch.tensor() 、transforms.ToTensor()的区别

torch.as_tensor()、torch.Tensor() 、 torch.tensor() 、transforms.ToTensor()的用法和区别

2022-11-24 11:01:43 5737 1

转载 残差结构详解

残差元的主要设计有两个,快捷连接和恒等映射,快捷连接使得残差变得可能,而恒等映射使得网络变深,而恒等映射主要有两个:跳跃连接和激活函数。ResNets的提出,可以解决上述问题,即使网络再深,训练的表现仍表现很好。它有助于解决梯度消失和梯度爆炸问题,让我们在训练更深网络的同时,又能保证良好的信息。

2022-10-19 16:51:03 16247

原创 《pytorch车型细分类网络》的源码

这篇文章代码有错误。我稍微调整了一下,可以正常跑了。

2022-09-30 17:16:37 1674 2

原创 【pytorch】带batch的tensor类型图像显示

数据加载器中数据的维度是[B, C, H, W],我们每次只拿一个数据出来就是[C, H, W],而matplotlib.pyplot.imshow要求的输入维度是[H, W, C],所以我们需要交换一下数据维度,把通道数放到最后面。

2022-09-22 17:32:12 6382 1

原创 Pytorch:tensor.mean()和tensor.sum()

​torch.mean在不同的dim上取不同行的均值。​

2022-09-20 16:06:27 14152 4

原创 transforms.Normalize()

transforms.Normalize:数据标准化,即均值为0,标准差为1。

2022-09-20 10:46:22 26263 6

原创 总结3-常见深度学习网络入门:pytorch实例

常见深度学习网络入门:pytorch实例

2022-09-15 10:01:49 3214

原创 PyTorch实例入门(1):图像分类的代码例子

PyTorch实例入门(1):图像分类,代码例子。参考文章:PyTorch实例入门(1):图像分类 - 知乎,我稍微整理了一下,方便初学者理解。代码可以直接跑。​

2022-09-15 10:00:05 3721 1

原创 Pytorch:一些常用代码

常用代码总结

2022-09-14 17:33:26 5687

原创 Python:datetime模块总结

Python:datetime模块总结

2022-09-09 10:40:44 998

转载 深度学习——分类和回归问题联系与区别

深度学习——分类和回归问题联系与区别

2022-09-02 17:28:57 11337

转载 Python带*参数和带**参数:可变参数

Python带*参数和带**参数:可变参数,*args, **kwargs

2022-08-24 12:35:21 7525 1

原创 pytorch之nn.Conv1d详解

pytorch之nn.Conv1d详解

2022-07-17 17:23:53 20040 8

转载 转:Pytorch模型小例子

原文链接:如果你想在五分钟内编写Pytorch模型,需要完成四个步骤:导入和预处理(数据集)数据,并对其进行批处理(数据加载器)使用神经网络建立模型。编写一个训练循环并运行它。验证集上的验证。由于MNIST已经做得非常彻底,我们将介绍如何导入torchvision数据集,并在五分钟内编写一些代码。出于这个原因,它不会很漂亮,但会起作用。下载和导入数据因为MNIST已经做得很死了,我们将搜索标准的torchvision数据集,看看是否还有其他我们想要尝试和预测的东西。让我们来看K...............

2022-06-14 17:15:27 1707

原创 解决:pycharm运行程序时出现Run ‘python tests for XXX.py‘的问题

解决:pycharm运行程序时出现Run ‘python tests for XXX.py‘的问题

2022-06-09 17:03:27 7113 3

原创 猫和狗的分类例子-Kaggle

完成书籍上的代码例子,执行环境依赖库安装。发现这句指令有错,pip install git+https://github.com/pytorch/tnt.git@master安装依赖包torchnet:tnt。遇到如下错误:1)主要是没有安装git包,执行命令: 2)完成安装git后,再次执行requirements中的指令,完成torchnet包的安装:...

2022-06-07 15:30:49 914

原创 Win10 + CUDA11.7+pytorch手动安装-2.0版本

利用anaconda安装pytorch环境,2022年更新。

2022-06-07 10:24:34 52485 16

原创 Pytorch:visdom介绍

一、介绍在深度学习领域,模型训练是一个必须的过程,因此常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等。在Tensorflow中,最常使用的工具非Tensorboard莫属;在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom。visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好。Visdom中有两个重要概念:env:环境。不同环境的可视化结果相互隔离,互不影响,在

2022-04-14 15:51:06 1928

转载 pytorch中model.train(),model.eval() 和 torch.no_grad()的区别

pytorch中model.train(),model.eval() 和 torch.no_grad()的区别

2022-04-13 14:39:09 848

转载 Python: sorted() 函数

描述sorted() 函数对所有可迭代的对象进行排序操作。sort 与 sorted 区别:sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作。list 的 sort 方法返回的是对已经存在的列表进行操作,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。示例:>>>sorted([5,2,3,1,4])[1,2,3,4,5]>>>a=[5...

2022-04-07 15:08:00 4232

原创 python:__init__.py和from...import的用法总结

一、__init__.py在Python工程里,当python检测到一个目录下存在__init__.py文件时,python就会把它当成一个模块(module)。Module跟C++的命名空间和Java的Package的概念很像,都是为了科学地组织化工程,管理命名空间。__init__.py可以是一个空文件,也可以有非常丰富的内容。本文将举一个非常简单的例子,来介绍__init__.py的用法;在本文的最后,我将会再简单介绍__init__.py的设计理念。1、一个普通的四则运算模块在不利用

2022-04-01 14:39:13 4117

原创 pytorch梯度的计算过程

1、基础知识:与numpy中的基本操作相似, pytorch 的作用是引入GPU加快运算, 增加图形界面, 适合大数据运算, 尤其是deep learning gradient 梯度类似于求导, 找到梯度下降的最佳路径。 tensor 除了可以进行线性代数运算, 还可以求梯度 tensor在pytorch里面是一个n维数组。我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度。在pytorch中一般叫做dynamic computation g...

2022-03-30 17:34:40 8542 2

原创 python指定Gpu

PyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他GPU。有如下两种方法来指定需要使用的GPU。1. 类似tensorflow指定GPU的方式,使用CUDA_VISIBLE_DEVICES。1.1 直接终端中设定:CUDA_VISIBLE_DEVICES=1 python my_script.py1.2 python代码中设定:import osos.environ["CUDA_VISIBLE_DEVICES"] = "2"见网址:(原)

2022-03-29 17:36:39 21161 1

翻译 Pytorch:torchvision包-总结

TORCHVISION官网地址:torchvision — Torchvision 0.12 documentation计算机视觉是深度学习中最重要的一类应用,为了方便研究者使用,PyTorch团队专门开发了一个视觉工具包torchvion,这个包独立于PyTorch,需通过pip instal torchvision安装。在之前的例子中我们已经见识到了它的部分功能,这里再做一个系统性的介绍。torchvision它是一个视觉工具包,提供了很多视觉图像处理的工具,主要包含三部分:datasets..

2022-03-25 17:16:02 1582

原创 Pytorch:Dataset总结

1、TORCH.UTILS.DATA官网地址:torch.utils.data — PyTorch 1.11.0 documentation在PyTorch中,数据加载可通过自定义的数据集对象。数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset,并实现两个Python魔法方法:__getitem__:返回一条数据,或一个样本。obj[index]等价于obj.__getitem__(index) __len__:返回样本的数量。len(obj)等价于obj.__len..

2022-03-24 17:10:23 2269

原创 python:filter用法

filter用法

2022-03-21 18:03:34 1793

转载 lambda用法

lambda用法

2022-03-21 17:49:02 638

转载 优化器:torch.optim

优化器:torch.optim

2022-01-16 18:10:44 1081

原创 总结2-深度学习网络搭建学习

总结2-深度学习网络搭建学习

2022-01-14 16:50:10 1463

原创 VS2017 QT/C++ 调用python函数传图像

C++调用python,传递图像数组。

2021-12-20 12:05:38 4386

人工智能-车型分类-车辆识别-公开数据集

汽车公共数据集,训练模型,用于车辆识别,车型分类。使用提供的2000张,标注了10类汽车的车辆场景分类的高分辨率图片。标签信息: bus,taxi,truck,family sedan,minibus,jeep,SUV,heavy truck,racing car,fire engine.

2022-09-22

ODB操作手册

ODB 是一个开源的,支持多平台,支持多数据库的 C++ 的 ORM 框架,可将 C++ 对象数据库表映射,进行轻松的数据库查询和操作。ODB支持Mysql、SqlLite、PostgreSQL、Oracle等数据库

2012-02-28

QxOrm_1.2.2

QxOrm 是一个 C++ 库用来提供 ORM 功能,基于 Qt 的 QtSql 库。。它提供大部分流行数据库的对象映射机制。

2012-02-28

WINDOWS核心编程 chm

书籍简介 原 书 书 名:Programming Applications for Microsoft Windows 问 世 日 期:1999年6月2日 著 书 作 者:Jeffrey Richter[美国] 章节目录 第一部分 程序员必读 第1章 对程序错误的处理 . 1.1 定义自己的错误代码 . 1.2 ErrorShow示例应用程序 第2章 Unicode 第3章 内核对象 . 3.1 什么是内核对象 . 3.2 进程的内核对象句柄表 . 3.3 跨越进程边界共享内核对象 第二部分 编程的具体方法 第4章 进程 . 4.1 编写第一个Windows应用程序 . 4.2 CreateProcess函数 . 4.3 终止进程的运行 . 4.4 子进程 . 4.5 枚举系统中运行的进程 第5章 作业 . 5.1 对作业进程的限制 . 5.2 将进程放入作业 . 5.3 终止作业中所有进程的运行 . 5.4 查询作业统计信息 . 5.5 作业通知信息 . 5.6 JobLab示例应用程序 第6章 线程的基础知识 . 6.1 何时创建线程 . 6.2 何时不能创建线程 . 6.3 编写第一个线程函数 . 6.4 CreateThread函数 . 6.5 终止线程的运行 . 6.6 线程的一些性质 . 6.7 C/C++运行期库的考虑 . 6.8 对自己的ID概念应该有所了解 第7章 线程的调度、优先级和亲缘性 . 7.1 暂停和恢复线程的运行 . 7.2 暂停和恢复进程的运行 . 7.3 睡眠方式 . 7.4 转换到另一个线程 . 7.5 线程的运行时间 . 7.6 运用结构环境 . 7.7 线程的优先级 . 7.8 对优先级的抽象说明 . 7.9 程序的优先级 . 7.10 亲缘性 第8章 用户方式中线程的同步 . 8.1 原子访问:互锁的函数家族 . 8.2 高速缓存行 . 8.3 高级线程同步 . 8.4 关键代码段 第9章 线程与内核对象的同步 . 9.1 等待函数 . 9.2 成功等待的副作用 . 9.3 事件内核对象 . 9.4 等待定时器内核对象 . 9.5 信标内核对象 . 9.6 互斥对象内核对象 . 9.7 线程同步对象速查表 . 9.8 其他的线程同步函数 第10章 线程同步工具包 . 10.1 实现关键代码段:Optex . 10.2 创建线程安全的数据类型和反信标 . 10.3 单个写入程序/多个阅读程序的保护 . 10.4 实现一个WaitForMultipleExpressions函数 第11章 线程池的使用 . 11.1 方案1:异步调用函数 . 11.2 方案2:按规定的时间间隔调用函数 . 11.3 方案3:当单个内核对象变为已通知状态时调用函数 . 11.4 方案4:当异步I/O请求完成运行时调用函数 第12章 纤程 . 12.1 纤程的操作 . 12.2 Counter示例应用程序 第三部分 内存管理 第13章 Windows的内存结构 . 13.1 进程的虚拟地址空间 . 13.2 虚拟地址空间如何分区 . 13.3 地址空间中的区域 . 13.4 提交地址空间区域中的物理存储器 . 13.5 物理存储器与页文件 . 13.6 保护属性 . 13.7 综合使用所有的元素 . 13.8 数据对齐的重要性 第14章 虚拟内存 . 14.1 系统信息 . 14.2 虚拟内存的状态 . 14.3 确定地址空间的状态 第15章 在应用程序中使用虚拟内存 . 15.1 在地址空间中保留一个区域 . 15.2 在保留区域中的提交存储器 . 15.3 同时进行区域的保留和内存的提交 . 15.4 何时提交物理存储器 . 15.5 回收虚拟内存和释放地址空间区域 . 15.6 改变保护属性 . 15.7 清除物理存储器的内容 . 15.8 地址窗口扩展———适用于Windows 2000 第16章 线程的堆栈 . 16.1 Windows 98下的线程堆栈 . 16.2 C/C++运行期库的堆栈检查函数 . 16.3 Summation示例应用程序 第17章 内存映射文件 . . . . . . . . .

2010-12-03

jsp 基于struts 固定资产管理系统 实例

服务器SQLServer,语言jsp,服务器tomcat 完整可运行版本。<br>包含数据库文件,安装指导文件。

2007-11-16

jsp医院门诊系统

小型医院门诊系统,数据库MySql,服务器tomcat ,编程语言jsp

2007-11-16

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除