- 博客(496)
- 资源 (6)
- 问答 (2)
- 收藏
- 关注
原创 python常用代码总结2
(2)列表追加多个相同的元素,比如追加10个0。(4)列表中追加一个二维列表的一行或一列。(1)列表追加多个元素,比如追加0-9。1、列表的常规追加元素、追加列表操作。(5)列表中可以追加不同长度的列表。(3列表追加一个已有列表。
2022-12-01 00:11:29
1079
1
转载 Jupyter Notebook局域网访问服务器(win10)
windows10服务器配置局域网jupyter Notebook的远程访问环境
2022-11-29 10:03:34
3457
原创 torch.copy_()函数介绍
原来权重的存储指针会指向新得到的权重张量的存储区域;而使用 .copy_() 的话,仅仅是改变原来权重的值,存储区域则不发生改变。copy_()有利于降低运算。
2022-11-24 15:19:37
4177
原创 torch.as_tensor()、torch.Tensor() 、 torch.tensor() 、transforms.ToTensor()的区别
torch.as_tensor()、torch.Tensor() 、 torch.tensor() 、transforms.ToTensor()的用法和区别
2022-11-24 11:01:43
4666
1
转载 残差结构详解
残差元的主要设计有两个,快捷连接和恒等映射,快捷连接使得残差变得可能,而恒等映射使得网络变深,而恒等映射主要有两个:跳跃连接和激活函数。ResNets的提出,可以解决上述问题,即使网络再深,训练的表现仍表现很好。它有助于解决梯度消失和梯度爆炸问题,让我们在训练更深网络的同时,又能保证良好的信息。
2022-10-19 16:51:03
8132
原创 【pytorch】带batch的tensor类型图像显示
数据加载器中数据的维度是[B, C, H, W],我们每次只拿一个数据出来就是[C, H, W],而matplotlib.pyplot.imshow要求的输入维度是[H, W, C],所以我们需要交换一下数据维度,把通道数放到最后面。
2022-09-22 17:32:12
5354
1
原创 PyTorch实例入门(1):图像分类的代码例子
PyTorch实例入门(1):图像分类,代码例子。参考文章:PyTorch实例入门(1):图像分类 - 知乎,我稍微整理了一下,方便初学者理解。代码可以直接跑。
2022-09-15 10:00:05
3267
1
转载 转:Pytorch模型小例子
原文链接:如果你想在五分钟内编写Pytorch模型,需要完成四个步骤:导入和预处理(数据集)数据,并对其进行批处理(数据加载器)使用神经网络建立模型。编写一个训练循环并运行它。验证集上的验证。由于MNIST已经做得非常彻底,我们将介绍如何导入torchvision数据集,并在五分钟内编写一些代码。出于这个原因,它不会很漂亮,但会起作用。下载和导入数据因为MNIST已经做得很死了,我们将搜索标准的torchvision数据集,看看是否还有其他我们想要尝试和预测的东西。让我们来看K...............
2022-06-14 17:15:27
1543
原创 解决:pycharm运行程序时出现Run ‘python tests for XXX.py‘的问题
解决:pycharm运行程序时出现Run ‘python tests for XXX.py‘的问题
2022-06-09 17:03:27
5574
3
原创 猫和狗的分类例子-Kaggle
完成书籍上的代码例子,执行环境依赖库安装。发现这句指令有错,pip install git+https://github.com/pytorch/tnt.git@master安装依赖包torchnet:tnt。遇到如下错误:1)主要是没有安装git包,执行命令: 2)完成安装git后,再次执行requirements中的指令,完成torchnet包的安装:...
2022-06-07 15:30:49
853
原创 Pytorch:visdom介绍
一、介绍在深度学习领域,模型训练是一个必须的过程,因此常常需要实时监听并可视化一些数据,如损失值loss,正确率acc等。在Tensorflow中,最常使用的工具非Tensorboard莫属;在Pytorch中,也有类似的TensorboardX,但据说其在张量数据加载的效率方面不如visdom。visdom是FaceBook开发的一款可视化工具,其实质是一款在网页端的web服务器,对Pytorch的支持较好。Visdom中有两个重要概念:env:环境。不同环境的可视化结果相互隔离,互不影响,在
2022-04-14 15:51:06
1478
转载 pytorch中model.train(),model.eval() 和 torch.no_grad()的区别
pytorch中model.train(),model.eval() 和 torch.no_grad()的区别
2022-04-13 14:39:09
562
转载 Python: sorted() 函数
描述sorted() 函数对所有可迭代的对象进行排序操作。sort 与 sorted 区别:sort 是应用在 list 上的方法,sorted 可以对所有可迭代的对象进行排序操作。list 的 sort 方法返回的是对已经存在的列表进行操作,而内建函数 sorted 方法返回的是一个新的 list,而不是在原来的基础上进行的操作。示例:>>>sorted([5,2,3,1,4])[1,2,3,4,5]>>>a=[5...
2022-04-07 15:08:00
3158
原创 python:__init__.py和from...import的用法总结
一、__init__.py在Python工程里,当python检测到一个目录下存在__init__.py文件时,python就会把它当成一个模块(module)。Module跟C++的命名空间和Java的Package的概念很像,都是为了科学地组织化工程,管理命名空间。__init__.py可以是一个空文件,也可以有非常丰富的内容。本文将举一个非常简单的例子,来介绍__init__.py的用法;在本文的最后,我将会再简单介绍__init__.py的设计理念。1、一个普通的四则运算模块在不利用
2022-04-01 14:39:13
2209
原创 pytorch梯度的计算过程
1、基础知识:与numpy中的基本操作相似, pytorch 的作用是引入GPU加快运算, 增加图形界面, 适合大数据运算, 尤其是deep learning gradient 梯度类似于求导, 找到梯度下降的最佳路径。 tensor 除了可以进行线性代数运算, 还可以求梯度 tensor在pytorch里面是一个n维数组。我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度。在pytorch中一般叫做dynamic computation g...
2022-03-30 17:34:40
6929
2
原创 python指定Gpu
PyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他GPU。有如下两种方法来指定需要使用的GPU。1. 类似tensorflow指定GPU的方式,使用CUDA_VISIBLE_DEVICES。1.1 直接终端中设定:CUDA_VISIBLE_DEVICES=1 python my_script.py1.2 python代码中设定:import osos.environ["CUDA_VISIBLE_DEVICES"] = "2"见网址:(原)
2022-03-29 17:36:39
17308
1
翻译 Pytorch:torchvision包-总结
TORCHVISION官网地址:torchvision — Torchvision 0.12 documentation计算机视觉是深度学习中最重要的一类应用,为了方便研究者使用,PyTorch团队专门开发了一个视觉工具包torchvion,这个包独立于PyTorch,需通过pip instal torchvision安装。在之前的例子中我们已经见识到了它的部分功能,这里再做一个系统性的介绍。torchvision它是一个视觉工具包,提供了很多视觉图像处理的工具,主要包含三部分:datasets..
2022-03-25 17:16:02
1115
原创 Pytorch:Dataset总结
1、TORCH.UTILS.DATA官网地址:torch.utils.data — PyTorch 1.11.0 documentation在PyTorch中,数据加载可通过自定义的数据集对象。数据集对象被抽象为Dataset类,实现自定义的数据集需要继承Dataset,并实现两个Python魔法方法:__getitem__:返回一条数据,或一个样本。obj[index]等价于obj.__getitem__(index) __len__:返回样本的数量。len(obj)等价于obj.__len..
2022-03-24 17:10:23
1944
原创 总结1-深度学习-基础知识学习
【小记】下采样和池化的区别:关于池化的神解释 深度学习VGG模型核心拆解,AlexNet和VGGNet,看到这,让我不由得先去看看CNN网络。 CNN(卷积神经网络)入门
2021-11-12 11:47:41
302
转载 Qt5.12安装错误提示:C:\Qt5.12.11\vcredist\vcredist_msvc2019_x86.exe /norestart /q
错误1:Error during installation process(qt.tools.qtcreator):Error while extracting archive "installer://qt.tools.qtcreator/4.15.0-0qtcreator.7z":cannot open file "C:\Qt5.12.11\Tools\QtCreator\bin\d3dcompiler_47.dll"for writing:拒绝访问。错误2:Error during...
2021-09-09 11:52:13
3185
1
转载 ZZ_MODIFIED_GEEBINF 不可用
链接:https://cnzhx.net/bbs/index.php?topic=709.msg1540模板已经复制到style文件夹中,但是提示“本文档中指定的输出样式ZZ_MODIFIED_GEEBINF 在样式文件夹中不可用” 请问是什么原因?怎么解决?答案:这似乎是 EndNote 9 和 Windows 10 之间的一个小问题。可以试试下面的解决方法,1)关闭 Office;2)双击下载的 ZZ_MODIFIED_GEEBINF.ens,让默认的 EndNote 样式编辑器打开它,然后
2021-02-25 23:28:23
2742
3
转载 池化层理解
参考网址:https://www.zhihu.com/question/36686900/answer/130890492https://www.cnblogs.com/skyfsm/p/6790245.html池化层夹在连续的卷积层中间, 用于压缩数据和参数的量,减小过拟合。简而言之,如果输入是图像的话,那么池化层的最主要作用就是压缩图像。下采样层也叫池化层,其具体操作与卷积层的操作基本相同,只不过下采样的卷积核为只取对应位置的最大值、平均值等(最大池化、平均池化),即矩阵之间的运算规律
2021-02-07 16:23:16
804
转载 卷积神经网络(CNN)中,卷积层、激活函数、池化层、全链接层术语解析
本文内容转自https://www.cnblogs.com/zf-blog/p/6075286.html和https://www.cnblogs.com/rgvb178/p/6055213.html整理如下:(1)卷积层:用它来进行特征提取,如下:输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图是用了两个filte
2021-02-07 15:40:01
1169
转载 神经网络:全连接层
全连接层:全连接层一般会放在网络的最后,作用是用来综合所有信息。对于cnn它提取特征的范围是全图的,直接把图像降维成一堆序列。卷积层是一种局部连接,它所能提取的特征的范围,取决于卷积核的感受野,当卷积核感受野覆盖到全图的时候,它的作用就和全连接层类似了。(所以用和特征图尺寸一样大小的卷积核做卷积,提取全图范围特征,和接全连接层,计算过程是等效的,输入输出,参数量完全一样)全连接之所以失宠:有人说是参数量大的原因。其实如果特征图压缩的足够小再做全连接,参数量和计算量也是不算大...
2021-02-06 17:27:25
26661
人工智能-车型分类-车辆识别-公开数据集
2022-09-22
ODB操作手册
2012-02-28
WINDOWS核心编程 chm
2010-12-03
VC++的项目,如何分层管理项目的程序文件啊?
2011-05-18
TA创建的收藏夹 TA关注的收藏夹
TA关注的人