面值为2,5,7的三种硬币,凑出27元最少需要多少枚硬币?

面值为2,5,7的三种硬币,数量无限,凑出27元最少需要多少枚硬币?

本题可以用DP或者DFS的方法求解,这里展示DP的四步求解过程:

1.确定状态

   易得,a1+a2+a3+..+ak = 27    在最后一步中,当前面值加上第ak枚硬币得出27  (ak = 2,5,7)
   则倒数第二步为:a1+a2+a3+..+ak-1 = (27-ak),实为本题的子问题


2.状态转移方程

设 f(x) =  凑出x元需要的最少硬币
那么,f(x) =  min(f(x-2)+1,f(x-5)+1,f(x-7)+1)
即f(x)等于前一步中得到的面值所需的硬币数加上最后的这1枚硬币
min表示 在f(x-2),f(x-5),f(x-7)中选择使用硬币最少的加上最后一 枚

3.初始化条件和边界

f(0) = 0
令无法凑出的面值需要-1个硬币,并用-1代表正无穷
f(x<0) = -1
f(1) = -1
f(3) = -1

....


4.确定计算顺序

f(x) = min(f(x-2)+1,f(x-5)+1,f(x-7)+1)
因需要从已经得出的结果中求f(x)
所以要从小往大遍历计算

 

5.代码

package dp;


public class coinsExchange {

    public static void main(String[] args) {
        int[] f = new int[28];
        f[0] = 0;
        for (int i = 1; i < f.length; i++) {
            int x = i - 2 < 0 ? -1 : add(f[i - 2], 1);
            int y = i - 5 < 0 ? -1 : add(f[i - 5], 1);
            int z = i - 7 < 0 ? -1 : add(f[i - 7], 1);
            f[i] = min(x, y, z);
        }
        System.out.println(f[27]);//5
            

    }
    
    //-1 代表正无穷,正无穷+任何数等于正无穷
    private static int add(int x, int y) {
        if(x == -1)
            return -1;
        return x + y;
    }

    private static int min(int x, int y, int z) {
        int t = min(x,y);
        return min(t,z);
    }

    //-1 代表正无穷,正无穷小于其它数
    private static int min(int x, int y) {
        if(x == -1 && y == -1)
            return x;
        if(x == -1)
            return y;
        if(y == -1)
            return x;
        return Math.min(x,y);
    }
}





 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值