Codeforces roudn 502 div1+div2 C. The Phone Number(数学观察)

 

C. The Phone Number

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Mrs. Smith is trying to contact her husband, John Smith, but she forgot the secret phone number!

The only thing Mrs. Smith remembered was that any permutation of nn can be a secret phone number. Only those permutations that minimize secret value might be the phone of her husband.

The sequence of nn integers is called a permutation if it contains all integers from 11 to nn exactly once.

The secret value of a phone number is defined as the sum of the length of the longest increasing subsequence (LIS) and length of the longest decreasing subsequence (LDS).

A subsequence ai1,ai2,…,aikai1,ai2,…,aik where 1≤i1<i2<…<ik≤n1≤i1<i2<…<ik≤n is called increasing if ai1<ai2<ai3<…<aikai1<ai2<ai3<…<aik . If ai1>ai2>ai3>…>aikai1>ai2>ai3>…>aik , a subsequence is called decreasing. An increasing/decreasing subsequence is called longest if it has maximum length among all increasing/decreasing subsequences.

For example, if there is a permutation [6,4,1,7,2,3,5][6,4,1,7,2,3,5] , LIS of this permutation will be [1,2,3,5][1,2,3,5] , so the length of LIS is equal to 44 . LDS can be [6,4,1][6,4,1] , [6,4,2][6,4,2] , or [6,4,3][6,4,3] , so the length of LDS is 33 .

Note, the lengths of LIS and LDS can be different.

So please help Mrs. Smith to find a permutation that gives a minimum sum of lengths of LIS and LDS.

Input

The only line contains one integer nn (1≤n≤1051≤n≤105 ) — the length of permutation that you need to build.

Output

Print a permutation that gives a minimum sum of lengths of LIS and LDS.

If there are multiple answers, print any.

Examples

Input

Copy

4

Output

Copy

3 4 1 2

Input

Copy

2

Output

Copy

2 1

Note

In the first sample, you can build a permutation [3,4,1,2][3,4,1,2] . LIS is [3,4][3,4] (or [1,2][1,2] ), so the length of LIS is equal to 22 . LDS can be ony of [3,1][3,1] , [4,2][4,2] , [3,2][3,2] , or [4,1][4,1] . The length of LDS is also equal to 22 . The sum is equal to 44 . Note that [3,4,1,2][3,4,1,2] is not the only permutation that is valid.

In the second sample, you can build a permutation [2,1][2,1] . LIS is [1][1] (or [2][2] ), so the length of LIS is equal to 11 . LDS is [2,1][2,1] , so the length of LDS is equal to 22 . The sum is equal to 33 . Note that permutation [1,2][1,2] is also valid.

#include<iostream>
#include<algorithm>
#include<string>
#include<map>//int dx[4]={0,0,-1,1};int dy[4]={-1,1,0,0};
#include<queue>//int gcd(int a,int b){return b?gcd(b,a%b):a;}
#include<vector>
#include<cmath>
#include<stack>
#include<string.h>
#include<stdlib.h>
#include<cstdio>
#define mod 1e9+7
#define ll unsigned long long
#define MAX 1000000000
#define ms memset
#define maxn 200005
using namespace std;

void solve(int p,int q,int ub)///p为分的块数,q为其余数
{
    if(p==0) return ;
    for(int i=ub-q+1;i<=ub;i++) cout<<i<<" ";
    solve(p-1,q,ub-q);
}
/*
题目大意:给定序列的长度,
要求构造出LIS和LDS之和最小的序列。

首先要知道分块的规律,
分成k块则,答案为n/k+k,这个结果显然,
要探测sqrt(k)附加的答案进行比较。

在比较出结果后,再进行递归输出。
注意其长度还和整除关系有关,注意下即可

*/

int main()
{
    int n;cin>>n;
    int sn=(int)sqrt(n),sm=sn+1;///先取下界
    ///cout<<sn<<" "<<sm<<endl;

    int len1=sn+n/sn,len2=sm+n/sm;
    if(n%sn) len1++;
    if(n%sm) len2++;

    if(len1<len2)
    {
        int p=n/sn,q=n%sn,cnt=n;
        if(q)
        {
              ///cout<<n-q+1;
              for(int i=n-q+1;i<=n;i++) cout<<i<<" ";
        }
        solve(p,sn,n-q);
    }
    else
    {
        int p=n/sm,q=n%sm,cnt=n;
        if(q)
        {
            ///cout<<n-q+1;
            for(int i=n-q+1;i<=n;i++) cout<<i<<" ";
          }
        solve(p,sm,n-q);///sm是长度
    }
    puts("");
    return 0;
}

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值