题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5593
#pragma comment(linker,"/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
#define debug puts("YES");
#define rep(x,y,z) for(int (x)=(y);(x)<(z);(x)++)
#define ll long long
#define lrt int l,int r,int rt
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define root l,r,rt
const int maxn =5e5+5;
const int mod=1e9+7;
const int ub=1e6;
ll powmod(ll x,ll y){ll t; for(t=1;y;y>>=1,x=x*x%mod) if(y&1) t=t*x%mod; return t;}
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
/*
题目大意:给定一个
生成树的方法A和B,
然后统计对于每个点,
距离不超过k的节点数量,
对于每个点这样的权重值异或起来就是最后的答案。
典型的树形DP,
两边DFS即可,第一遍只记录向下的关于距离k的节点个数,
第二遍利用所求从上往下更新状态即可,由于递推关系,
第二遍更新DP数组的顺序要注意下。
*/
///链式前向星
struct node{int u,nxt;}e[maxn<<1];
int head[maxn],tot=0;
void init(){memset(head,-1,sizeof(head));tot=0;}
void add(int x,int y){e[tot]=node{y,head[x]};head[x]=tot++;}
///数据域
ll n,k,a,b;
ll dp[maxn][11];
void dfs1(int u,int pre)
{
dp[u][0]=1;
for(int i=head[u];~i;i=e[i].nxt)
{
int v=e[i].u;
if(v==pre) continue;
dfs1(v,u);
for(int j=1;j<=10;j++)
dp[u][j]+=dp[v][j-1];
}
}
void dfs2(int u,int pre)
{
if(pre!=-1)
for(int j=10;j>=1;j--)///注意DP的时间序问题
{
dp[u][j]+=dp[pre][j-1];
if(j>=2) dp[u][j]-=dp[u][j-2];
}
for(int i=head[u];~i;i=e[i].nxt)
{
int v=e[i].u;
if(v==pre) continue;
dfs2(v,u);
}
}
int main()
{
int t;scanf("%d",&t);
while(t--)
{
scanf("%lld%lld%lld%lld",&n,&k,&a,&b);
memset(dp,0,sizeof(dp));init();///初始化
for(int i=2;i<=n;i++)
{
ll tmp=((ll)a*i+b)%(i-1)+1;///注意可能会爆数据范围
add(i,tmp),add(tmp,i);
}
dfs1(1,-1);dfs2(1,-1);
for(int i=1;i<=n;i++)
for(int j=1;j<=10;j++) dp[i][j]+=dp[i][j-1];
ll ans=0;for(int i=1;i<=n;i++) ans^=dp[i][k];
printf("%d\n",ans);
}
return 0;
}