CodeForces - 115E Linear Kingdom Races (线段树优化DP)*

本文介绍了一种使用线段树优化动态规划(DP)算法的解决方案,针对一个具体问题:在给定区间和费用值的基础上,通过选择若干区间并支付相关费用,目标是最大化总价值。文章详细阐述了算法思路,包括如何维护DP方程,处理区间排序、费用更新以及查询最大值等关键步骤,最终实现O(nlogn)的时间复杂度。
摘要由CSDN通过智能技术生成

题目链接:http://codeforces.com/problemset/problem/115/E

#include<bits/stdc++.h>
using namespace std;

#define debug puts("YES");
#define rep(x,y,z) for(int (x)=(y);(x)<(z);(x)++)
#define ll long long

#define lrt int l,int r,int rt
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define root l,r,rt

#define mst(a,b) memset((a),(b),sizeof(a))
#define pii pair<int,int>
#define fi first
#define se second
#define mp(x,y) make_pair(x,y)

const int  maxn =2e5+5;
const int mod=1e9+7;
const int ub=1e6;
ll powmod(ll x,ll y){ll t; for(t=1;y;y>>=1,x=x*x%mod) if(y&1) t=t*x%mod; return t;}
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}
/*
题目大意:给定一个长度为n的区间,
每个点都有费用值,有若干个区间,
每个区间都有个增益值,
问选择若干区间并付出与区间相关的区间段费用之后总价值最大是多少。
(可以为0)


把dp式子写出来就是:
dp[i]=max(dp[i],dp[j]+pay(j+1,i)-cost(j+1,i)),
关键是如何维护这个式子,把区间按右端点排序排好,
扫一遍n序列,把当前的费用丢到过去的dp值里面(默认一定要选),
如果碰到有右端点,把左端点左区间的dp值全部加上增益值,
然后通过查询左边的dp值最大值,求出当前位置的dp值,
当然当前位置的cost也可以选择不付,那么还要再与dp【i-1】比较下。
然后丢到线段树里面去。

整体就是用线段树维护dp方程。
复杂度:O(nlogn),wa了三次,
细节和边界问题没想清楚。

*/

ll dp[maxn];///dp值
///线段树结构
ll tree[maxn<<2],lazy[maxn<<2];
void pushup(lrt)
{
    tree[rt]=max(tree[rt<<1],tree[rt<<1|1]);
}
void pushdown(lrt)
{
    if(lazy[rt])
    {
        lazy[rt<<1]+=lazy[rt];
        lazy[rt<<1|1]+=lazy[rt];
        tree[rt<<1]+=lazy[rt];
        tree[rt<<1|1]+=lazy[rt];
        lazy[rt]=0;
    }
}
void build(lrt)
{
    lazy[rt]=0;
    if(l==r)
    {
        tree[rt]=0;
        return ;
    }
    int mid=l+r>>1;
    build(lson),build(rson),pushup(root);
}
void update(lrt,int L,int R,ll v)
{
    if(L<=l&&r<=R)
    {
        tree[rt]+=v;
        lazy[rt]+=v;
        return ;
    }
    pushdown(root);
    int mid=l+r>>1;
    if(L<=mid) update(lson,L,R,v);
    if(mid<R) update(rson,L,R,v);
    pushup(root);
}
ll query(lrt,int L,int R)
{
    if(L<=l&&r<=R)
    {
        return tree[rt];
    }
    pushdown(root);
    int mid=l+r>>1;
    ll ans=0LL;
    if(L<=mid) ans=max(ans,query(lson,L,R));
    if(mid<R) ans=max(ans,query(rson,L,R));
    return ans;
}
int n,m,c[maxn];
int l,r,x;
vector<pii > qy[maxn];
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&c[i]);
    for(int i=1;i<=m;i++) {scanf("%d%d%d",&l,&r,&x);qy[r].push_back(mp(l,x));}
    build(0,n,1);
    for(int i=1;i<=n;i++){
        update(0,n,1,0,i-1,-c[i]);
        if(qy[i].size()){
            for(int j=0;j<qy[i].size();j++){
                update(0,n,1,0,qy[i][j].fi-1,qy[i][j].se);
            }
        }
        dp[i]=max(dp[i-1],1LL*query(0,n,1,0,i-1));
        update(0,n,1,i,i,dp[i]);
    }
    printf("%I64d\n",max(0LL,dp[n]));
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值