CodeForces 66E Petya and Post (线性DP+数学思维)

这篇博客详细介绍了如何解决CodeForces上的66E问题,重点探讨了利用线性动态规划(DP)策略结合数学思维来求解的方法。通过分析题目链接,博主分享了具体的解题思路和步骤。
摘要由CSDN通过智能技术生成

题目链接:http://codeforces.com/problemset/problem/66/E

#include<bits/stdc++.h>
using namespace std;

#define debug puts("YES");
#define rep(x,y,z) for(int (x)=(y);(x)<(z);(x)++)
#define ll long long

#define lrt int l,int r,int rt
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define root l,r,rt
#define mst(a,b) memset((a),(b),sizeof(a))

#define pii pair<ll,ll>
#define mk(x,y) make_pair(x,y)

const int  maxn =1e5+5;
const int mod=1e9+7;
const int ub=1e6;
ll powmod(ll x,ll y){ll t; for(t=1;y;y>>=1,x=x*x%mod) if(y&1) t=t*x%mod; return t;}
ll gcd(ll x,ll y){return y?gcd(y,x%y):x;}

/*
题目大意:经典加油问题,
每个站可以加ai油,一段路可以消耗bi油,最后是一个环路,
问从哪些站点出发可以走完一整个环。

这道题可以自己手动模拟下,
模拟大概两三次就周到规律了,
假设现在是顺时针绕环,
那么dp[i]=dp[i+1]+a[i]-b[i],
为什么会有这个关系呢?
可以借助函数图像来思考,
少了出发点的话函数图像整体
上移一段,我们这样维护最小值即可
用dp[i]表示从i点出发回到i点的油量的最小值。
这样思路就清晰了,逆时针也是一样的。

时间复杂度:O(n).

*/

int a[maxn],b[maxn],n;
int dp[maxn],vis[maxn];
vector<int> ans;

int main()
{
    scanf("%d",&n);
    rep(i,1,n+1) scanf("%d",&a[i]);
    rep(i,1,n+1) scanf("%d",&b[i]);

    int minv=0,tmp=0;
    mst(vis,0);

    rep(i,1,n+1){
        tmp+=a[i]-b[i];
        minv=min(minv,tmp);
    }
    dp[1]=dp[n+1]=minv;
    for(int i=n;i>=1;i--)
    {
        dp[i]=dp[i+1]+a[i]-b[i];
        if(dp[i]>=0) vis[i]=1;
    }

    minv=0,tmp=0,b[0]=b[n];
    mst(dp,0);
    for(int i=n;i>=1;i--){
        tmp+=a[i]-b[i-1];
        minv=min(minv,tmp);
    }
    dp[n]=dp[0]=minv;
    rep(i,1,n+1){
        dp[i]=dp[i-1]+a[i]-b[i-1];
        if(dp[i]>=0) vis[i]=1;
    }

    rep(i,1,n+1) if(vis[i]) ans.push_back(i);
    printf("%d\n",ans.size());
    rep(i,0,ans.size()) printf("%d ",ans[i]);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值